q&more
Meine Merkliste
my.chemie.de  
Login  

News

Wie man effiziente Materialien für OLED-Displays entwickelt

© D. Andrienko / MPI-P

Ladungen in organischen Halbleitern können durch Sauerstoff- oder Wassermoleküle gefangen werden.

25.09.2019: Für Anwendungen wie Leuchtdioden oder Solarzellen stehen heute organische Materialien im Mittelpunkt der Forschung. Diese organischen Moleküle könnten eine vielversprechende Alternative zu den bisher verwendeten Halbleitern wie Silizium oder Germanium sein und werden in OLED-Displays eingesetzt. Ein großes Problem ist, dass in vielen organischen Halbleitern der Stromfluss durch mikroskopische Defekte behindert wird. Wissenschaftler um Dr. Gert-Jan Wetzelaer und Dr. Denis Andrienko vom Max-Planck-Institut für Polymerforschung haben nun untersucht, wie organische Halbleiter so gestaltet werden können, dass die Leitfähigkeit durch diese Defekte nicht beeinflusst wird.

Das Grundprinzip der ersten Glühbirne, die Thomas Edison im 19. Jahrhundert erfunden hat, war sehr einfach: Elektronen - negativ geladene Teilchen - durchfließen einen Kohlefaden und erzeugen Licht, indem ihre Energie in Licht und Wärme umgewandelt wird. Die Physik der Lichterzeugung in Halbleitern ist heute komplexer: Elektronen durchfließen ein Bauteil und geben ihre Energie an einem bestimmten Punkt ab. Dazu müssen sie einen freien Platz auf einer tiefer liegenden Energieebene finden, d. h. einen Platz, der nicht von einem Elektron besetzt ist. Dieser freie Platz kann als eine Art positive Ladung, ein sogenanntes Loch, angesehen werden. Springt das Elektron in das Loch, wird seine Energie in Form von Licht freigesetzt. Nach diesem Prinzip wandelt eine organische Leuchtdiode (OLED) elektrischen Strom in Licht um.

Die Effizienz eines solchen Bauteils hängt stark davon ab, wie gut Löcher und Elektronen geleitet werden können. Wenn entweder Elektronen oder Löcher durch Defekte eingefangen werden, so dass sie nicht mehr zum Strom beitragen können, liegt ein Überschuss einer Ladungsart vor. Wenn beispielsweise Löcher gefangen werden, gibt es mehr Elektronen als Löcher, d. h. nur ein Teil der Elektronen kann Licht erzeugen und die Effizienz der OLED wird reduziert.

"In unseren neuesten Experimenten haben wir eine große Bandbreite an organischen Halbleitern untersucht und die wichtigsten Parameter herausgefunden, die für eine gleichmäßige und defektfreie Leitung von Löchern und Elektronen wichtig sind", sagt Gert-Jan Wetzelaer (Arbeitskreis Prof. Paul Blom). In einem Halbleiter bewegen sich Elektronen auf einem höheren Energieniveau, während sich Löcher auf einem niedrigeren (tieferen) Energieniveau bewegen: Die Wissenschaftlerinnen und Wissenschaftler fanden heraus, dass die Leitfähigkeit beider Ladungsarten stark von der Position dieser Energieniveaus abhängt. "Je nach Energie dieser Ebenen kann der Ladungstransport entweder von Elektronen oder Löchern dominiert werden oder sie tragen mit der richtigen Wahl der Energieniveaus gleichermaßen zum Ladungstransport bei", sagt Wetzelaer.

In Computersimulationen haben Wissenschaftler um Denis Andrienko (Arbeitskreis Prof. Kurt Kremer) die Herkunft dieser Ladungsfallen genauer untersucht: "In unseren Simulationen haben wir Cluster von Wassermolekülen im Halbleiter eingefügt, die sich in kleinen Taschen im Halbleiter ansammeln können", erklärt Andrienko. "Wir haben festgestellt, dass diese Cluster von Wassermolekülen als Falle für Löcher fungieren können, was zu elektronendominierten organischen Halbleitern führt. Im Gegensatz dazu fangen durch Sauerstoff bedingte Defekte bei lochdominierten Halbleitern Elektronen ein. Als Ergebnis konnten wir zeigen, dass der hochunipolare Ladungstransport für Löcher oder Elektronen von einer sehr geringen Anzahl von Defekten wie Wasser und Sauerstoff bestimmt wird." Leider hat sich die vollständige Beseitigung solcher Defekte als schwierig erwiesen.

Damit können die Mainzer Forscher definieren, wie sie in Zukunft hocheffiziente organische Halbleiter gestalten können: Die unterschiedlichen Energieniveaus des Materials sollten in einem bestimmten Bereich liegen, was den Einfluss von Sauerstoff- und Wassermolekülen, die die Hauptursache für das Einfangen von Ladungen sind, stark reduziert. Basierend auf diesem Konzept wurden kürzlich die ersten hocheffizienten OLEDs mit defektfreier elektrischer Leitfähigkeit realisiert.

Originalveröffentlichung:
Naresh B. Kotadiya, Anirban Mondal  , Paul W. M. Blom, Denis Andrienko  & Gert-Jan A. H. Wetzelaer; "A window to trap-free charge transport in organic semiconducting thin films"; Nature Materials; 2019

Fakten, Hintergründe, Dossiers

  • OLEDs
  • Displays
  • organische Halbleiter
  • Elektronen

Mehr über MPI für Polymerforschung

  • News

    Nanodiamanten im Gehirn

    Die Aufnahme von Bildern des menschlichen Gehirns sowie dessen Therapie bei neurodegenerativen Erkrankungen ist in der aktuellen medizinischen Forschung noch immer eine große Herausforderung. Die sogenannte Blut-Hirn-Schranke, eine Art Filtersystem des Körpers zwischen Blutkreislauf und dem ... mehr

    Wundheilung mit der Kraft der Nanofaser

    Die Heilung von Verletzungen, insbesondere von durchtrennten Nervenbahnen, erfordert heutzutage aufwändige Methoden, wie z. B. das Zusammennähen der beiden entstandenen Nervenstümpfe. Wissenschaftler des Arbeitskreises von Prof. Tanja Weil (Max-Planck-Institut für Polymerforschung) haben nu ... mehr

    Nano-3D-Drucken für medizinische Anwendungen

    Personalisierte Wirkstoffabgabe oder nanometergroße robotische Systeme könnten ein Schlüsselkonzept für zukünftige medizinische Anwendungen darstellen. In diesem Zusammenhang haben Wissenschaftler um David Ng (Arbeitskreis Prof. Tanja Weil) vom Max-Planck-Institut für Polymerforschung (MPI- ... mehr

Mehr über Max-Planck-Gesellschaft

  • News

    Genetische Vielfalt hilft in der Krebstherapie

    Die ständige Auseinandersetzung mit Krankheitserregern hat das Immunsystem des Menschen im Laufe der Evolution entscheidend geprägt. Eine Schlüsselrolle spielen dabei sogenannte HLA-Moleküle. Diese Proteine präsentieren dem Immunsystem Fragmente von eingedrungenen Krankheitserreger und akti ... mehr

    Wie Zellen unsere Organe dichthalten

    Unsere Organe sind spezialisierte Kompartimente mit jeweils eigenem Milieu und Funktion. Um unsere Organe nach außen abzudichten, müssen die Zellen im Epithelgewebe eine Barriere bilden, die sogar für Moleküle dicht ist. Diese Barriere wird durch einen Proteinkomplex gebildet, der alle Zell ... mehr

    Krankheitserreger aus dem Meer

    Im Küstenbereich der Meere lebt das Bakterium Vibrio parahaemolyticus, einer der Hauptverursacher von Magen-Darm-Infektionen beim Menschen. Ein Forscherteam um Simon Ringaard vom Max-Planck-Institut für terrestrische Mikrobiologie in Marburg untersucht, wie sich die Bakterien an die wechsel ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.