q&more
Meine Merkliste
my.chemie.de  
Login  

News

Eingewickelte Silber-Häufchen

Kristallstruktur eines durch DNA stabilisierten Silber-Nanoclusters aufgeklärt

(c) Wiley-VCH

Der Nanocluster aus 16 Silber-Atomen wird durch "Einwickeln" in DNA-Stränge stabilisiert.

13.09.2019: Unter Nanoclustern versteht man „Häufchen“ aus einigen wenigen Atomen, die oft interessante optische Eigenschaften zeigen und attraktive Sonden für bildgebende Verfahren werden könnten, etwa in der Biomedizin und Diagnostik. In der Zeitschrift Angewandte Chemie stellen Forscher einen Nanocluster aus 16 Silber-Atomen vor, der durch „Einwickeln“ in DNA-Stränge stabilisiert wird. Durch Röntgenuntersuchungen konnten sie die Kristallstruktur aufklären und relevante Wechselwirkungen innerhalb der Struktur identifizieren.

Anders als Feststoffe oder Nanopartikel haben Nanocluster, ähnlich wie Moleküle, diskrete Energieniveaus, zwischen denen sie durch Absorption bzw. Emission von Licht (Fluoreszenz) wechseln können. Nanocluster aus Silber sind besonders interessant, u.a. weil sie sehr hell fluoreszieren können. Ihre optischen Eigenschaften hängen stark von der Größe der Nanocluster ab. Entsprechend wichtig ist es, einheitliche Cluster mit exakt definierter Atomzahl herzustellen. Schon seit einigen Jahren verwenden Wissenschaftler dazu kurze DNA-Stränge als biokompatible, wasserlösliche Alternativen zu herkömmlichen „Schablonen“.

Das Team um Tom Vosch von der Universität Kopenhagen und Jiro Kondo von der Sophia University in Tokio haben einen Nanocluster aus exakt 16 Silberatomen kristallisiert – mithilfe einer DNA-Sequenz aus zehn Nukleotiden. Die magenta-roten Kristalle emittieren Licht im nahen Infrarot, wenn sie mit grünem Licht bestrahlt werden – mit nahezu identischen Spektren im Kristall und in Lösung.

Wie die Strukturanalyse ergab, haben die Ag16-Nanocluster einen Durchmesser von etwa 7 Å und eine Höhe von etwa 15 Å (1 Å ist der zehnmillionste Teil eines Millimeters). Jeder Nanocluster ist in jeweils zwei DNA-Stränge, die eine Hufeisen-förmige Konformation annehmen, fest eingewickelt und wird so fast vollständig abgeschirmt. Die beiden DNA-Stränge werden in erster Linie über Wechselwirkungen mit den Silber-Atomen und einige wenige Wasserstoffbrücken verbunden. Überraschenderweise wird keine für DNA sonst übliche Watson-Crick-Basenpaarung beobachtet. Innerhalb des Clusters wurden zudem neuartige Silber-Silber-Wechselwirkungen beobachtet.

Die Packung der DNA-Silber-Nanocluster zum Kristall wird durch verschiedene Wechselwirkungen gefördert, wie etwa zwischen Phosphatgruppen und Calciumionen sowie sogenannte π-Stapelungen zwischen benachbarten Thymingruppen. Letztere spielen eine wichtige Rolle bei der den Kristallisationsprozessen. Zudem liegen innerhalb des Kristalls locker assoziierte Silber-Kationen vor: Einige bilden eine Brücke zwischen DNA-Basen, während andere nur mit Silberatomen innerhalb des Cluster-Kerns wechselwirken.

Die neuen Erkenntnisse könnten helfen, die Zusammenhänge zwischen strukturellen und Emissionseigenschaften von Nanoclustern aufzuklären und einen Ansatz für die Synthese weiterer monodisperser, biokompatibler, wasserlöslicher Silber-Cluster mit günstigen photophysikalischen Charakteristika zu entwerfen, beispielsweise für biomedizinische Bildgebungsverfahren.

Originalveröffentlichung:
Jiro Kondo et al.; "Crystal structure of a NIR‐Emitting DNA‐Stabilized Ag16 Nanocluster"; Angewandte Chemie International Edition; 2019

Fakten, Hintergründe, Dossiers

  • Nanocluster
  • Bildgebungsverfahren
  • Silber
  • Kristallstruktur
  • Strukturanalysen

Mehr über University of Copenhagen

  • News

    Neue Entdeckungen identifizieren CRISPR-Cas Abwehrsysteme in Bakterien

    Mit Hilfe von hochmodernen Mikroskopen und Synchrotronquellen haben Forscher der Universität Kopenhagen bahnbrechende Erkenntnisse darüber gewonnen, wie Bakterien als Abwehrmechanismen gegen Angriffe von anderen Bakterien und Viren funktionieren. Die Studie, die gerade in der Zeitschrift Na ... mehr

    Seltene Erden gegen Produktpiraterie

    Forscher der Universität Kopenhagen haben das weltweit sicherste Kennzeichnungssystem für die Bekämpfung von Raubkopien entwickelt, darunter gefälschte Arzneimittel, Lebensmittel, Designartikel und Kunstwerke. Das System könnte in einem Jahr auf dem Markt sein, und da die Markierungen zufäl ... mehr

Mehr über Angewandte Chemie

  • News

    Post-Lithium-Technologie

    Preiswerte und umweltfreundliche Metalle wie Natrium und mehrwertige Leichtmetalle sollen einmal Lithium in der Batterietechnologie ersetzen. Eine große Herausforderung ist jedoch die Entwicklung langlebiger und stabiler Elektroden mit hoher Energiedichte und gleichzeitig schneller Lade- un ... mehr

    Elektro-Tücher

    Abendkleider mit eingewebten LEDs sehen extravagant aus, aber sind vom Strom abhängig. Für solche tragbaren Stromquellen haben chinesische Wissenschaft ein zu Stoff verpressbares Elektrodenmaterial entwickelt, das leicht, stabil und leistungsfähig ist. Mikrofluidik, also winzige Flüssigkeit ... mehr

    Tetravinylallen, eine kleine, aber nützliche chemische Substanz, wurde erstmals hergestellt

    Viele Naturstoffe haben einen komplizierten molekularen Aufbau und lassen sich nur schwer im Labor herstellen. Hilfe könnte von einem kleinen Kohlenwasserstoff namens Tetravinylallen kommen, das australische Wissenschaftler zum ersten Mal synthetisiert haben. Chemiker könnten mit dieser Sub ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.