q&more
Meine Merkliste
my.chemie.de  
Login  

News

Nanodiamanten im Gehirn

Winzige Diamanten können Blut-Hirn-Schranke überwinden und für Diagnose- und Therapiezwecke genutzt werden

© MPI-P, Lizenz CC-BY-SA

Mit Albumin beschichtete Nanodiamanten können die Blut-Hirn-Schranke überwinden und gezielt für Diagnose- und Therapiezwecke im Gehirn verwendet werden

03.09.2019: Die Aufnahme von Bildern des menschlichen Gehirns sowie dessen Therapie bei neurodegenerativen Erkrankungen ist in der aktuellen medizinischen Forschung noch immer eine große Herausforderung. Die sogenannte Blut-Hirn-Schranke, eine Art Filtersystem des Körpers zwischen Blutkreislauf und dem Zentralen Nervensystem, erschwert die Zuführung von Medikamenten oder Kontrastmitteln, die eine Therapie und Bildaufnahme erlauben würden. Wissenschaftler des Max-Planck-Instituts für Polymerforschung haben nun winzig kleine Diamanten, sogenannte Nanodiamanten, hergestellt, die als Plattform sowohl für Therapie als auch Diagnose von Erkrankungen des Gehirns dienen könnten.

Die Blut-Hirn-Schranke ist eine physiologische Grenzschicht, die hochselektiv arbeitet und das Gehirn hiermit schützt: Zum einen werden Krankheitserreger oder Gifte effektiv am Eindringen in das Gehirn gehindert, zum anderen können jedoch benötigte Boten- und Nährstoffe sie ungehindert passieren. Diese Selektivität macht es für Mediziner schwierig, das Gehirn zu untersuchen oder zu behandeln, da Medikamente oder auch kontrastgebende Mittel für bildgebende Verfahren die Barriere nicht überwinden können.

Wissenschaftler um Dr. Jana Hedrich, Prof. Dr. Heiko Luhmann und Prof. Dr. Tanja Weil haben nun in Kooperation mit der Universität Ulm sowie der Universitätsmedizin der Johannes-Gutenberg-Universität Mainz ein auf Nanodiamanten basierendes System auf ihre Eignung als Diagnose- und Therapieverfahren hin untersucht.

Nano-Diamanten mit einer Größe im Bereich eines millionstel Meters haben den Vorteil einer hohen Biokompatibilität: Sie sind für den Körper nicht abbaubar, sollten gut vertragen werden und eignen sich somit potentiell sowohl für Diagnose- wie auch Therapiezwecke. Für ihre Forschung haben die Wissenschaftler die Diamanten auf zwei Weisen verändert: Eine Beschichtung mit einem Biopolymer, basierend auf dem häufigsten Protein des menschlichen Blutes „Serum Albumin“, ermöglicht die Aufnahme in das Gehirn und erlaubt es später, Medikamente mit dem Diamanten zu verbinden. „Diamanten sind chemisch nicht reaktiv – das heißt Medikamentenmoleküle anzubinden ist schwierig“, so Jana Hedrich und Tanja Weil. „Mit der Albumin-Beschichtung haben wir die Möglichkeit, eine stabile Beschichtung zu erzeugen und fast beliebige Medikamente daran anzubinden“.

Als weitere Modifikation wurde in den Diamanten gezielt ein Defekt eingebaut, indem ein Kohlenstoff-Atom in dem aus Kohlenstoff bestehenden Diamanten durch ein Stickstoff-Atom ausgetauscht wurde. Weiterhin befindet sich direkt neben diesem Stickstoff eine Leerstelle im Kristall. „Ein Diamant ist normalerweise sehr klar und im Idealfall lupenrein – Licht kann also einfach hindurchgehen“, erläutert Hedrich. „Indem wir nun gezielte Änderungen in der Gitterstruktur vornehmen, erzeugen wir Defekte, die es uns erlauben, den Diamanten durch Laserstrahlen oder auch durch Magnetresonanztomographen nachzuweisen: Er leuchtet sozusagen“. Auf diese Art und Weise können die Forscherinnen und Forscher den Diamanten auch zu Diagnosezwecken einsetzen.

In ihrer neuesten Veröffentlichung haben die Wissenschaftler nun sowohl im Reagenzglas wie auch an Mäusen getestet, in wieweit das geschaffene Diamanten-Albumin-System die Blut-Hirn-Schranke überwinden kann. Sie konnten einen effektiven Transport der Diamanten in das Gehirn nachweisen, ohne dass dabei die Blut-Hirn-Schranke selbst angegriffen wurde.

Das neu entwickelte System hat den Vorteil, dass es an die zu behandelnde Person angepasst werden kann und so eine hochindividuelle Diagnostik und Therapie erlauben könnte. So könnte eine Modifikation der Oberfläche der Diamanten dafür sorgen, dass nur bestimmte Zelltypen im Gehirn mit Medikamenten versorgt werden und so z. B. Tumore gezielt therapiert werden könnten. Die Wissenschaftler sehen in ihrem System einen wichtigen Schritt in Richtung der Diagnose sowie Behandlung von Erkrankungen des Gehirns, wie neurodegenerativer Erkrankungen oder auch Hirntumore. Mit ihrer Kombination von leuchtenden Diamanten mit verträglichen Biopolymeren haben sie zum ersten Mal ein System entwickelt, welches die Vorteile einer hohen Biokompatibilität, einer langen Stabilität, einer einfachen Kombination mit verschiedenen Medikamenten sowie einer Nachweismöglichkeit durch medizinische Verfahren vereint.

Originalveröffentlichung:
Pierpaolo Moscariello et al.; "Unraveling In Vivo Brain Transport of Protein‐Coated Fluorescent Nanodiamonds"; SMALL; 2019

Fakten, Hintergründe, Dossiers

  • Blut-Hirn-Schranke
  • Nanodiamanten
  • Gehirn
  • Albumin
  • neurodegenerative E…
  • Hirntumore

Mehr über MPI für Polymerforschung

  • News

    Wie man effiziente Materialien für OLED-Displays entwickelt

    Für Anwendungen wie Leuchtdioden oder Solarzellen stehen heute organische Materialien im Mittelpunkt der Forschung. Diese organischen Moleküle könnten eine vielversprechende Alternative zu den bisher verwendeten Halbleitern wie Silizium oder Germanium sein und werden in OLED-Displays einges ... mehr

    Wundheilung mit der Kraft der Nanofaser

    Die Heilung von Verletzungen, insbesondere von durchtrennten Nervenbahnen, erfordert heutzutage aufwändige Methoden, wie z. B. das Zusammennähen der beiden entstandenen Nervenstümpfe. Wissenschaftler des Arbeitskreises von Prof. Tanja Weil (Max-Planck-Institut für Polymerforschung) haben nu ... mehr

    Nano-3D-Drucken für medizinische Anwendungen

    Personalisierte Wirkstoffabgabe oder nanometergroße robotische Systeme könnten ein Schlüsselkonzept für zukünftige medizinische Anwendungen darstellen. In diesem Zusammenhang haben Wissenschaftler um David Ng (Arbeitskreis Prof. Tanja Weil) vom Max-Planck-Institut für Polymerforschung (MPI- ... mehr

Mehr über Max-Planck-Gesellschaft

  • News

    10-fach schnellere Superauflösungsmikroskopie

    Fortschritte in der Fluoreszenzmikroskopie ermöglichen es, biologische Prozesse unterhalb der klassischen Beugungsgrenze des Lichtes sichtbar zu machen. Eine Variante dieser sogenannten Superauflösungstechniken ist DNA-PAINT, die von Ralf Jungmann, Forschungsgruppenleiter für "Molekulare Bi ... mehr

    Alternde Zellen gehen mit Änderungen in der Hirnstruktur einher

    Telomere sind die Schutzkappen unserer Chromosomen und spielen im Alterungsprozess eine zentrale Rolle. Kurze Telomere werden mit chronischen Krankheiten in Verbindung gebracht – zur Verkürzung beitragen kann zum Beispiel eine hohe Stressbelastung. Verändern sich Telomere in ihrer Länge, sp ... mehr

    Bakterien machen Perlenketten

    Erstmals konnten Wissenschaftler in Bremen Bakterien bei der Bildung von Perlenketten, die von der Zelloberfläche abstehen, beobachten. Diese Perlenketten dienen dazu, Stoffe aus der Umgebung besser aufnehmen und speichern zu können. Bakterien haben keinen Mund. Sie essen, indem sie Stoffe ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.