q&more
Meine Merkliste
my.chemie.de  
Login  

News

Biologisches Gefahrenpotenzial von Nanopartikeln untersucht

HHU / Stefan Fasbender

CD34+-Stammzellen mit Kohlenstoff-Nanopartikel (magenta); in Blau sind die Zellkerne zu sehen. Die Forscher stellten fest, dass die Nanopartikel in den Lysosomen der Zelle eingeschlossen sind.

28.08.2019: Kohlenstoff-Nanopartikel sind ein vielversprechendes Werkzeug für biomedizinische Anwendungen, etwa für den gezielten Wirkstofftransport in Zellen. Ein Team aus Physik, Medizin und Chemie der Heinrich-Heine-Universität Düsseldorf (HHU) hat nun untersucht, ob diese Partikel für den Organismus potenziell gefährlich sind, beziehungsweise wie Zellen sich der Teilchen wieder zu entledigen versuchen.

Unter Nanopartikeln versteht man solche Teilchen, die kleiner als fünf Nanometer sind – ein Nanometer entspricht einem millionstel Millimeter – und damit die Größe von Makromolekülen haben. So kleine Teilchen werden sehr gut in Körperzellen aufgenommen. Diese Eigenschaft hat zwei Aspekte. Zum einen können Nanopartikel damit gute Vehikel sein, um an sie geheftete Wirkstoffe gezielt in kranke Zellen zu transportieren.

Zum anderen können sie aber auch gesundheitliche Risiken bergen, die beispielsweise im Kontext mit Feinstaub diskutiert werden. Feinstaub entsteht unter anderem in Verbrennungsprozessen, ein Anteil davon ist als Nanopartikel einzuordnen. Diese extrem kleinen Teilchen können die „Blut-Luft-Schranke“ überwinden und so in den Körper eindringen: Die Bronchialschleimhaut in der Lunge filtert sie nicht heraus, sondern sie gelangen bis in die Lungenbläschen und von dort ins Blut.

HHU-Forscher vom Institut für Experimentelle Festkörperphysik um Prof. Dr. Thomas Heinzel und von der Klinik für Hämatologie, Onkologie und Klinische Immunologie um Prof. Dr. Rainer Haas haben zusammen mit Arbeitsgruppen aus der Chemie nun untersucht, was passiert, wenn Körperzellen solche Nanopartikel aufnehmen. Die Forscher nutzten Nanopartikel aus Graphen; dies ist eine spezielle Form des Kohlenstoffs, der aus zweidimensionalen Lagen von Kohlenstoff-Sechseckringen besteht. Diese brachten sie in spezielle Stammzellen des blutbildenden Systems ein, die sogenannte CD34+-Stammzellen. Diese Zellen sind aufgrund ihrer lebenslangen Teilungsfähigkeit besonders empfänglich für schädigende Umwelteinflüsse. Man geht davon aus, dass bei diesen Zellen eine Schädigung durch Nanopartikel – wenn überhaupt – stärker ausfällt als bei den robusteren anderen Zelltypen.

Das interdisziplinäre Düsseldorfer Forschungsteam konnte zeigen, dass die Kohlenstoff-Nanopartikel in die Zellen gelangen und dort in speziellen Organellen, den sogenannten Lysosomen, eingekapselt werden. Die Lysosomen dienen im Körper als eine Art Entsorgungseinheit, in denen Fremdkörper angesammelt und normalerweise dann mit Hilfe von Enzymen abgebaut werden. Einen solchen Abbauprozess beobachteten die Forscher allerdings über die Dauer der Experimente – einige Tage – nicht.

Beim Vergleich der aktiven Gene („Genexpression“) von Stammzellen mit und ohne Beigabe von Nanopartikeln ergab sich, dass lediglich eine von insgesamt 20.800 aufgezeichneten Expressionen verändert war; bei 1.171 weiteren Genexpressionen konnten darüber hinaus leichte Effekte festgestellt werden.

Prof. Heinzel zu den Ergebnissen: „Die Einkapslung der Nanopartikel in den Lysosomen sorgt dafür, dass diese Teilchen zumindest für einige Tage – solange unsere Untersuchungen dauerten – sicher verwahrt sind und die Zelle nicht schädigen können. Damit ist die Lebensfähigkeit der Zelle ohne wesentliche Änderung der Genexpression erhalten.“ Diese Erkenntnis ist wichtig, wenn man Nanopartikel als Fähren für Medikamente in die Zelle nutzen will. Langzeitaussagen, die etwa eine erhöhte Wahrscheinlichkeit für eine Entartung der Zellen in Richtung Krebsentstehungen feststellen können, sind in dem hier gewählten experimentellen Rahmen nicht möglich.

Originalveröffentlichung:
Stefan Fasbender, Lisa Zimmermann, Ron-Patrick Cadeddu, Martina Luysberg, Bastian Moll, Christoph Janiak, Thomas Heinzel & Rainer Haas; "The Low Toxicity of Graphene Quantum Dots is Reflected by Marginal Gene Expression Changes of Primary Human Hematopoietic Stem Cells"; Scientific Reports; (2019) 9:12028

Fakten, Hintergründe, Dossiers

  • Lysosomen
  • Genexpression

Mehr über Universität Düsseldorf

  • News

    Parkinsonforschung: Bindeprotein verhindert Fibrillenwachstum

    Verschiedene neurodegenerative Erkrankungen wie Parkinson hängen eng mit der Verklumpung eines bestimmten Proteins, des α-Synuclein, zusammen. Ein internationales Kooperationsprojekt unter Beteiligung der Heinrich-Heine-Universität Düsseldorf (HHU), des Forschungszentrums Jülich (FZJ) und d ... mehr

    Zusammenlagerung von Proteinen nicht nur bei Alzheimer und Parkinson relevant

    Bei neurodegenerativen Erkrankungen spielen Amyloid-Fibrillen eine gefährliche Rolle. Wissenschaftler der Heinrich-Heine-Universität Düsseldorf (HHU) und des Forschungszentrums Jülich konnten nun mit Hilfe der Kryoelektronenmikroskopie (Kryo-EM) erstmals die räumliche Struktur der Fibrillen ... mehr

    Biofilme generieren ihre Nährstoffversorgung selbst

    „Biofilme“ sind schleimig-glitschige Beläge von Mikroorganismen, die sich auf Gegenständen, aber auch Gewebe ablagern. Handelt es sich bei den Mikroorganismen zum Beispiel um Bakterien, bergen diese Biofilme unter Umständen erhebliche Gesundheitsgefahren. Solche Biofilme können etwa bakteri ... mehr

  • q&more Artikel

    Überraschend einfache Moleküle als potenzielle OLED-Emitter?

    Organische Leuchtdioden (OLEDs) erobern derzeit den Markt für Displays von Smartphones und Fernsehgeräten. Sie besitzen aber auch ein großes Potenzial als Leuchtmittel. Allerdings erreichen die bislang verfügbaren Emitter für den blauen Teil des sichtbaren Spektrums nicht die Effizienz und ... mehr

  • Autoren

    Kristoffer Thom

    Kristoffer Thom, Jahrgang 1993, studierte Chemie an der Heinrich-Heine-Universität Düsseldorf und widmete sich während seiner Bachelorarbeit in der Gruppe von Rainer Weinkauf der Untersuchung von Peptiden mittels Massenspektrometrie. Für seine Masterarbeit wechselte er zur Arbeitsgruppe von ... mehr

    Prof. Dr. Peter Gilch

    Peter Gilch, Jahrgang 1970, studierte Chemie an der Universität Konstanz bevor er 1999 an der Technischen Universität München promovierte. Anschließend habilitierte er sich 2004 am Lehrstuhl für Biomolekulare Optik der Ludwig-Maximilians-Universität München. Seit 2009 hat er eine Professur ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.