q&more
Meine Merkliste
my.chemie.de  
Login  

News

Zusammenlagerung von Proteinen nicht nur bei Alzheimer und Parkinson relevant

FZJ / Christine Röder

Querschnitt des 3D-Modells einer Amyloidfibrille vor dem Hintergrund einer Kryoelektronenmikroskopie-Aufnahme. Gelb hervorgehoben ist eine PI3K-SH3-Domäne.

23.08.2019: Bei neurodegenerativen Erkrankungen spielen Amyloid-Fibrillen eine gefährliche Rolle. Wissenschaftler der Heinrich-Heine-Universität Düsseldorf (HHU) und des Forschungszentrums Jülich konnten nun mit Hilfe der Kryoelektronenmikroskopie (Kryo-EM) erstmals die räumliche Struktur der Fibrillen entschlüsseln, die sich aus PI3K-SH3-Domänen bilden – ein für die Forschung wichtiges Modellsystem. Die untersuchten Fibrillen stehen zwar selbst nicht mit einer Erkrankung in Verbindung, aber die erzielten Ergebnisse und entwickelten Methoden können zum Verstehen von Krankheiten wie Alzheimer und Parkinson dienen.

Proteine sind zentrale Bausteine von lebender Materie. Diese aus einzelnen Aminosäuren zusammengesetzten komplexen Moleküle bestehen teilweise aus tausenden einzelner Atome und sind dreidimensional geformt; man spricht von Faltungen. Von der Faltung hängt die biologische Funktion ab.

Kommt es zu fehlerhaften Faltungen, werden die Proteine nicht nur nutzlos, sie können sogar toxisch wirken. Man geht heute davon aus, dass viele neurodegenerative Erkrankungen durch fehlgefaltete Proteine ausgelöst werden. Sie bilden Ablagerungen an kritischen Stellen des Nervengewebes. Es bilden sich zunächst faserartige Strukturen, die sogenannten Amyloidfibrillen. Mehrerer dieser können sich zu den typischen Plaques verknäulen, die im Gehirngewebe nachweisbar sind und die Nervenzellen beeinträchtigen, schädigen oder töten können.

Die PI3K-SH3-Domänen sind Teil eines größeren Proteins, sie können aber auch allein in gefaltete Form gebracht werden. Sie spielen in der zellulären Kommunikation eine wichtige Rolle. Diese Domänen werden seit vielen Jahren als Modellsysteme genutzt, um die Proteinfaltung zu untersuchen und dabei auch die Ursachen von Fehlfaltungen zu ermitteln. Denn man hat entdeckt, dass auch diese Domänen Amyloidfibrillen bilden können, die sich von den für Erkrankungen typischen Fibrillen nicht unterscheiden und sogar genauso giftig für Zellen sind. Tatsächlich können potenziell sogar alle Proteine Fibrillen bilden; der gesunde Körper muss sich dieses Prozesses ständig aktiv erwehren.

Viele grundlegende Entdeckungen von Amyloidfibrillen, die direkt auf krankheitsrelevante Proteine übertragen werden können, wurden an diesem Modellsystem gemacht. „Was aber bisher nicht bekannt war, ist die genaue dreidimensionale Struktur der Fibrillen aus den PI3K-SH3-Domänen“, so Prof. Dr. Gunnar Schröder, Professor für rechnergestützte Strukturbiologie an der HHU und gleichzeitig Arbeitsgruppenleiter am Forschungszentrum Jülich.

„Diese Strukturen konnten wir nun mithilfe der Kryo-EM aufklären“, ergänzt Prof. Dr. Alexander Büll, der zusammen mit Schröder Corresponding Author der bei Nature Communications veröffentlichten Studie ist. Büll war bis Anfang 2019 Juniorprofessor an der HHU und ist nun Professor am Department of Biotechnology and Biomedicine an der Technischen Universität von Dänemark in Lyngby. Prof. Schröder ergänzt zur Bedeutung dieser Strukturaufklärung: „Jetzt, wo wir die räumliche Struktur kennen, können viele der früheren Daten neu oder besser interpretiert werden.“

„Die Kryoelektronenmikroskopie ist ein hervorragendes Werkzeug, um die dreidimensionale Struktur der Fibrillen aufzuklären“, betont Christine Röder, Erstautorin der Studie und Doktorandin in der Arbeitsgruppe von Prof. Schröder in Jülich. Bei dieser Methode, für deren Entwicklung 2017 der Nobelpreis für Chemie vergeben wurde, können komplexe Biomoleküle, die nur in wässriger Umgebung ihre natürliche Form haben, mit atomarer Auflösung dargestellt werden. Dazu werden die in Wasser gelösten Proben – zum Beispiel Proteine – in kürzester Zeit bei sehr tiefen Temperaturen eingefroren und damit in ihrer natürlichen Struktur fixiert. So ist es möglich, sie in diesem Zustand elektronenmikroskopisch zu untersuchen. Dies gelingt allerdings nicht mit einem „Schuss“, sondern nur durch eine Folge vieler Aufnahmen, die das Protein aus unterschiedlichen Winkeln zeigen. Anschließend setzen Computer die vielen Einzelaufnahmen zu einem dreidimensionalen Bild zusammen.

Originalveröffentlichung:
Christine Röder, Nicola Vettore, Lena N. Mangels, Lothar Gremer, Raimond B. G. Ravelli, Dieter Willbold, Wolfgang Hoyer, Alexander K. Buell & Gunnar F. Schröder; "Atomic structure of PI3-kinase SH3 amyloid fibrils by cryo-electron microscopy"; Nature Communications (2019) 10:3754

Fakten, Hintergründe, Dossiers

  • neurodegenerative E…
  • Amyloidfibrillen
  • Kryoelektronenmikroskopie
  • Alzheimer-Krankheit
  • Morbus Parkinson
  • Proteinaggregate

Mehr über Universität Düsseldorf

  • News

    Parkinsonforschung: Bindeprotein verhindert Fibrillenwachstum

    Verschiedene neurodegenerative Erkrankungen wie Parkinson hängen eng mit der Verklumpung eines bestimmten Proteins, des α-Synuclein, zusammen. Ein internationales Kooperationsprojekt unter Beteiligung der Heinrich-Heine-Universität Düsseldorf (HHU), des Forschungszentrums Jülich (FZJ) und d ... mehr

    Biologisches Gefahrenpotenzial von Nanopartikeln untersucht

    Kohlenstoff-Nanopartikel sind ein vielversprechendes Werkzeug für biomedizinische Anwendungen, etwa für den gezielten Wirkstofftransport in Zellen. Ein Team aus Physik, Medizin und Chemie der Heinrich-Heine-Universität Düsseldorf (HHU) hat nun untersucht, ob diese Partikel für den Organismu ... mehr

    Biofilme generieren ihre Nährstoffversorgung selbst

    „Biofilme“ sind schleimig-glitschige Beläge von Mikroorganismen, die sich auf Gegenständen, aber auch Gewebe ablagern. Handelt es sich bei den Mikroorganismen zum Beispiel um Bakterien, bergen diese Biofilme unter Umständen erhebliche Gesundheitsgefahren. Solche Biofilme können etwa bakteri ... mehr

  • q&more Artikel

    Überraschend einfache Moleküle als potenzielle OLED-Emitter?

    Organische Leuchtdioden (OLEDs) erobern derzeit den Markt für Displays von Smartphones und Fernsehgeräten. Sie besitzen aber auch ein großes Potenzial als Leuchtmittel. Allerdings erreichen die bislang verfügbaren Emitter für den blauen Teil des sichtbaren Spektrums nicht die Effizienz und ... mehr

  • Autoren

    Kristoffer Thom

    Kristoffer Thom, Jahrgang 1993, studierte Chemie an der Heinrich-Heine-Universität Düsseldorf und widmete sich während seiner Bachelorarbeit in der Gruppe von Rainer Weinkauf der Untersuchung von Peptiden mittels Massenspektrometrie. Für seine Masterarbeit wechselte er zur Arbeitsgruppe von ... mehr

    Prof. Dr. Peter Gilch

    Peter Gilch, Jahrgang 1970, studierte Chemie an der Universität Konstanz bevor er 1999 an der Technischen Universität München promovierte. Anschließend habilitierte er sich 2004 am Lehrstuhl für Biomolekulare Optik der Ludwig-Maximilians-Universität München. Seit 2009 hat er eine Professur ... mehr

Mehr über Forschungszentrum Jülich

  • News

    Neues Quantenpunkt-Mikroskop zeigt die elektrischen Potenziale einzelner Atome

    Ein Forscherteam aus Jülich hat in Kooperation mit der Universität Magdeburg eine neue Methode entwickelt, mit der sich die elektrischen Potenziale einer Probe atomgenau vermessen lassen. Mit etablierten Verfahren war es bisher kaum möglich, die elektrischen Potenziale, die sich in der unmi ... mehr

    Eckpfeiler der Physik muss ergänzt werden

    Atomkerne und Elektronen in Festkörpern beeinflussen sich gegenseitig in ihren Bewegungen – und das nicht nur in seltenen Ausnahmefällen, wie bisher angenommen. Das haben Wissenschaftler des Forschungszentrums Jülich und der Technischen Universität München (TUM) bei Messungen am Heinz Maier ... mehr

    Energiereiche Festkörperbatterie: Hohe Energiedichte mit Lithium-Anode und Hybridelektrolyt

    Wissenschaftler des Forschungszentrums Jülich und der Universität Münster haben eine neue Festkörperbatterie vorgestellt, die über eine Anode aus reinem Lithium verfügt. Lithium gilt als ideales Elektrodenmaterial, mit dem sich die höchsten Energiedichten erreichen lassen. Das Metall ist se ... mehr

  • q&more Artikel

    Makromolekulare Umgebungen beeinflussen Proteine

    Eine intensive Wechselwirkung von Proteinen mit anderen Makromolekülen kann wichtige Eigenschaften von Proteinen wie z. B. die Translationsbeweglichkeit oder den Konformationszustand signifi kant verändern. mehr

    Koffein-Kick

    Koffein ist die weltweit am weitesten verbreitete psycho­aktive Substanz. Sie findet sich als Wirkstoff in Getränken wie Kaffee, Tee und sog. Energy Drinks. Koffein kann Vigilanz und Aufmerksamkeit erhöhen, Schläfrigkeit reduzieren und die kognitive Leistungsfähigkeit steigern. Seine neurob ... mehr

  • Autoren

    Prof. Dr. Jörg Fitter

    Jg. 1963, studierte Physik an der Universität Hamburg. Nach seiner Promotion an der FU Berlin war er im Bereich der Neutronenstreuung und der molekularen Biophysik am HahnMeitnerInstitut in Berlin und am Forschungszentrum Jülich tätig. Er habilitierte sich in der Physikalischen Biologie der ... mehr

    Dr. David Elmenhorst

    David Elmenhorst, geb. 1975, studierte Medizin in Aachen und promovierte am Deutschen Zentrum für Luft- und Raumfahrt in Köln im Bereich der Schlafforschung. 2008/2009 war er Gastwissenschaftler am Brain Imaging Center des Montreal Neuro­logical Institut in Kanada. Seit 2003 ist er in der A ... mehr

    Prof. Dr. Andreas Bauer

    Andreas Bauer, geb. 1962, studierte Medizin und Philo­sophie in Aachen, Köln und Düsseldorf, wo er auf dem Gebiet der Neurorezeptorautoradiografie promovierte. Seine Facharztausbildung absolvierte er an der Universitätsklinik Köln, er habilitierte an der Universität Düsseldorf im Fach Neuro ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.