q&more
Meine Merkliste
my.chemie.de  
Login  

News

Alles in einer Zelle: Die Mikrobe, die Öl in Gas umwandelt

© Max-Planck-Institut für Marine Mikrobiologie

Epifluoreszenzmikroskopisches Bild von Methanoliparia-Zellen, die an einem Öltröpfchen haften. Die weiße Maßstabsleiste hatte eine Länge von 10 Mikrometern.

22.08.2019: Neue Bilder aus dem Mikroskop deuten darauf hin, dass die kürzlich entdeckten Mikroben Methanoliparia Methan aus Rohöl erzeugen können – und zwar ohne fremde Hilfe.

Die winzigen Organismen klammern sich an Öltröpfchen und vollbringen Großes: Ganz allein scheinen sie Öl in Methan umzuwandeln, in einem Verfahren namens Alkan-Disproportionierung. Bislang war dies nur von Symbiosen zwischen Bakterien und Archäen bekannt. Forscher des Max-Planck-Instituts für Marine Mikrobiologie haben diese Mikrobe namens Methanoliparia nun weltweit in Öllagerstätten gefunden.

Erdöl und Erdgas treten an sogenannten „Seeps“ vielerorts aus dem Meeresboden aus. Dort wandern die Kohlenwasserstoffe aus dem Quellgestein durch Risse und Sedimente Richtung Sedimentoberfläche. In den oberen Sedimentschichten werden viele Kohlenwasserstoffe, vorrangig Alkane, abgebaut und ermöglichen am dunklen Meeresgrund die Entstehung einer Vielzahl dicht besiedelter Lebenräume. Auch tief drinnen im Sediment, wo kein Sauerstoff vorhanden ist, bilden sie eine wichtige Energiequelle für unterirdische Mikroorganismen, darunter einige der sogenannten Archäen.

Die Archäen waren in den letzten Jahren immer wieder für eine Überraschung gut. Nun liefert eine Studie des Bremer Max-Planck-Instituts für Marine Mikrobiologie und des MARUM, Zentrum für Marine Umweltwissenschaften, erste Bilder, Genome und Umweltinformationen einer Mikrobe, die das Potenzial hat, langkettige Kohlenwasserstoffe in Methan umzuwandeln.

Spaltung von Öl in Methan und Kohlendioxid

Diese Mikrobe, eine Archäe namens Methanoliparia, verwandelt die Kohlenwasserstoffe mittels der sogenannten Alkan-Disproportionierung: Sie spaltet das Öl in Methan (CH4) und Kohlendioxid (CO2). Bislang dachte man, dass diese Umwandlung nur in einer komplizierten Teamarbeit zwischen zwei verschiedenen Organismengruppen, Archäen und Bakterien, möglich ist. Nun zeigen die Forscher vom Max-Planck-Institut für Marine Mikrobiologie und vom MARUM, dass es auch noch eine andere Lösung gibt. „Es ist das erste Mal, dass wir eine Mikrobe sehen, die eigenständig Öl zu Methan abbauen kann“, so Erstautor Rafael Laso-Pérez.

Während einer Ausfahrt im Golf von Mexiko sammelten die Wissenschaftler Sedimentproben vom Chapopote Knoll, einem Öl- und Gasaustritt in 3000 Meter Wassertiefe. Nach ihrer Rückkehr nach Bremen analysierten sie diese Proben und stellten fest, dass Methanoliparia bisher unbekannte Enzyme besitzt, um das recht unreaktive Öl ohne Sauerstoff zu nutzen. „Der neue Organismus, Methanoliparia, ist eine Art Mischwesen“, sagt Gunter Wegener, Initiator und einer der Hauptautoren der Studie. „Einige seiner Verwandten sind Archäen, die kettenförmige Kohlenwasserstoffe mit abbauen, andere sind die altbekannten Methanogenen, die Methan bilden.“ Methanoliparia kombiniert die enzymatischen Werkzeuge dieser beiden Verwandten, baut also das Öl ab und bildet dabei Methan. Den Forschern ist es außerdem gelungen, die Organismen auf Leinwand zu bannen. Die entstandenen Bilder stützen ihre Vermutung: „Im Mikroskop konnten wir zeigen, dass Methanoliparia an Öltröpfchen haftet. Wir fanden keine Hinweise, dass es Bakterien oder andere Archäen als Partner braucht“, so Wegener weiter.

Sehr häufig und weltweit verbreitet

Methanogene Mikroorganismen waren im Laufe der Zeit für unser Klima sehr wichtig, da ihr Stoffwechselprodukt Methan ein starkes Treibhausgas ist – mehr als 25 Mal stärker als Kohlendioxid. Daher wollten Laso-Pérez und seine Kollegen wissen, wie verbreitet der neue Organismus ist. „ Wir durchsuchten DNA-Bibliotheken und entdeckten, dass Methanoliparia häufig in Öllagerstätten – und nur in Öllagerstätten – im ganzen Ozean zu finden ist. Dieser Organismus könnte also eine Schlüsselrolle bei der Umwandlung langkettiger Kohlenwasserstoffe zu Methan spielen“, erklärt Laso-Pérez.

Darum wollen die Bremer Forscher jetzt noch mehr über den Lebenswandel dieser Mikrobe herausfinden. „Wir haben nun den genomischen Nachweis und Bilder von der weiten Verbreitung und den erstaunlichen Fähigkeiten von Methanoliparia. Aber wir können sie noch nicht im Labor züchten. Das ist unser nächster Schritt, der uns erlauben wird, noch viel mehr spannende Details zu erforschen“, so Wegener. „Ist es beispielsweise möglich, den Prozess umzukehren und dadurch das Treibhausgas Methan in Kraftstoff umzuwandeln?“

Originalveröffentlichung:
Rafael Laso-Pérez, Cedric Hahn, Daan M. van Vliet, Halina E. Tegetmeyer, Florence Schubotz, Nadine T. Smit, Thomas Pape, Heiko Sahling, Gerhard Bohrmann, Antje Boetius, Katrin Knittel, Gunter Wegener; "Anaerobic degradation of non-methane alkanes by Ca. Methanoliparia in hydrocarbon seeps of the Gulf of Mexico"; mBio; 2019

Fakten, Hintergründe, Dossiers

  • Methanogene
  • Mikroorganismen

Mehr über MPI für Marine Mikrobiologie

  • News

    Die rostfressende Mikrobe

    Schon lange hegten Mikrobiologen den Verdacht, dass es diesen kleinen Gesellen geben muss. Doch gefunden haben sie ihn nicht – bis jetzt: Die Mikrobe, die sowohl Methan als auch Eisen “frisst”. Forscher vom Max-Planck-Institut für Marine Mikrobiologie und der niederländischen Radboud Univer ... mehr

    Vom Rosenduft zu Nylon und den Kunststoffen

    Betörende Düfte, nüchterne Fakten: von Pflanzen ausgehende Düfte sind fast immer Monoterpene und Monoterpenalkohole, die ätherischen Öle der Pflanzen sind natürliche Kohlenwasserstoffverbindungen. So ist Geraniol der verlockend duftende Alkohol der Rosen. Forscher des Max-Planck-Instituts f ... mehr

    Bunt markierte Zellen unter dem Mikroskop

    Was wächst denn da? Ob im Krankenhaus, in Lebensmitteln oder im Meer, Mikroorganismen sind allgegenwärtig. Sie nachzuweisen, zu unterscheiden und zu zählen gehört zu den Hauptaufgaben in der medizinischen Mikrobiologie und in den Umweltwissenschaften. Mit farbig markierten Sonden rücken die ... mehr

Mehr über Max-Planck-Gesellschaft

  • News

    Direkte Abbildung von Riesenmolekülen

    Die optische Auflösung einzelner Konstituenten herkömmlicher Moleküle ist aufgrund der kleinen Bindungslänge im Sub-Nanometerbereich bisher nicht möglich. Physikern unter Leitung von Prof. Immanuel Bloch, Direktor der Abteilung Quantenvielteilchensysteme am MPQ,  ist es nun jedoch gelungen, ... mehr

    Weniger Diabetes trotz fettreicher Ernährung

    Zu viel Fett und Zucker macht dick und krank – das wissen schon kleine Kinder. Aber warum ist das eigentlich so und kann man da etwas gegen unternehmen? Die Forschungsgruppe von Prof. Jens Brüning am Max-Planck-Institut für Stoffwechselforschung in Köln hat jetzt in einer Studie in der Fach ... mehr

    3D-Filme aus der Zellmembran

    Auf die Funktionsweise von Zellen bietet sich nun ein neuer Blick, und der könnte auch Erkenntnisse für die Suche nach neuen Medikamente liefern. Forscher des Max-Planck-Instituts für die Physik des Lichts und des Max-Planck-Zentrums für Physik und Medizin in Erlangen haben eine Methode ent ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.