q&more
Meine Merkliste
my.chemie.de  
Login  

News

Kabelloser Mikromotor aus verdrillter Faser

HZG/Oliver Gould

In der Polyvinylalkohol-Mikrofaser sind Graphenoxidblättchen eingelagert. Die Bllättchen versteifen die Faser in der Bewegungsrichtung und sorgen so für einen Energiespeicher (schem. Darstellung)

19.07.2019: Einen hocheffizienten Mikromotor und zugleich Energiespeicher haben Forscher des Helmholtz-Zentrums Geesthacht und der Université de Bordeaux im Fachmagazin „Science“ vorgestellt. Der Mikromotor besteht aus einer Kunststoff-Mikrofaser, die bei Raumtemperatur steif ist. Erwärmt wird die Faser elastisch und kann verdrillt werden – wie bei einem Modellflugzeug mit Gummiband. Wieder abgekühlt behält die Faser aber anders als Gummi ihren verdrillten Zustand bei; so lange, bis man sie am Einsatzort erneut erwärmt. Die Drehspannung kehrt zurück, das bewegliche Ende beginnt sich zu drehen und der „Mikrofaser-Motor“ kann als Antrieb dienen.

Der „Trick“ der Forscher, um eine hohe Energiedichte bei der Speicherung zu erreichen, besteht hauptsächlich darin, den Kunststoff mit winzigen Blättchen aus Graphenoxid zu versteifen. Hauptautor Jinkai Yuan, der an der Université de Bordeaux forscht, erklärt: „In den Experimenten zeigte sich, dass Graphenoxid den Kohlenstoff-Nanoröhrchen überlegen ist.“ Durch die günstige Orientierung der Nanoblättchen zur Deformationsrichtung der Faser und deren eigener Verformung wird mit Graphenoxid ein höheres Drehmoment erreicht.

Professor Andreas Lendlein, Mitautor des „Science“-Artikels und Leiter des HZG-Instituts für Biomaterialforschung in Teltow, erläutert: „Die Anzahl der Drehungen, die der Mikro-Fasermotor ausführen kann, und der Temperaturbereich, in dem diese Bewegung ausgelöst wird, können vorbestimmt werden“. Die sogenannte Schalttemperatur, bis zu der die Drehspannung bewahrt wird, kann in weiten Grenzen über die Temperatur festlegt werden, bei der die Faser zuvor verdrillt wurde. Bei dem untersuchten Fasermaterial, dem Polyvinylalkohol, hat sich eine Programmiertemperatur von 80 Grad Celsius als besonders günstig erwiesen. Hier können 80% der durch die Verdrillung der Faser programmierten Drehungen wieder abgerufen werden. Für künftige medizinische Anwendungen kann man aber auch mit einem Kunststoff arbeiten, der bei Körpertemperatur schaltet.

„Dieses Ergebnis ist ein wichtiger Schritt hin zu vielen Anwendungen – wie Mikroroboter oder gar autonome Systeme, bei denen die Programmierung beispielsweise mit Windkraft erfolgen könnte“, so Andreas Lendlein.

Mit ihrem einfach aufgebauten Motor füllen die beiden beteiligten Forschergruppen in Bordeaux und in Teltow bei Berlin in der Tat eine Marktlücke. Denn für viele Zwecke ist ein Elektromotor zu schwach, zu groß, zu wenig robust – und er benötigt Strom- und Steuerungskabel. Bei den bisherigen Versuchen mit Fasern waren wiederum Rotationsgeschwindigkeit, Drehmoment und Rotationswinkel zu klein. Vor allem aber ließ die gewichtsbezogene Energiedichte zu wünschen übrig. Beim Mikrofaser-Motor ist sie 60-mal höher als bei natürlichen Skelettmuskeln.

Originalveröffentlichung:
Jinkai Yuan et al.; "Shape memory nanocomposite fibers for untethered high-energy microengines"; Science; 12 Jul 2019: Vol. 365, Issue 6449, pp. 155-158

Fakten, Hintergründe, Dossiers

  • Mikromotoren
  • Energiespeicher
  • Mikrofasern
  • Graphenoxid

Mehr über Helmholtz-Zentrum Geesthacht

  • News

    Abgas von Kohlendioxid befreien: Neues Membranverfahren

    Die membranbasierte Abtrennung des Treibhausgases Kohlendioxid (CO2) aus Kraftwerken und Industrieanlagen wird seit Januar 2016 in einem durch das Bundesministerium für Wirtschaft und Energie (BMWI) geförderten Projekt erforscht. Wissenschaftler des Helmholtz-Zentrums Geesthacht (HZG), des ... mehr

Mehr über Université Bordeaux

  • News

    Auf dem Weg zur künstlichen Zelle

    Zellen, die sich im Reagenzglas bilden, sollen große Fragen der Biologie beantworten: Was ist die Minimalausstattung für eine lebende Zelle? Und wie hat das Leben auf der Erde begonnen? Den Vorläufer einer künstlichen Zelle präsentieren nun Forscher des Max-Planck-Instituts für Dynamik komp ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.