q&more
Meine Merkliste
my.chemie.de  
Login  

News

Leistungsstärkere weiße OLEDs

Photonen mittels Nanostrukturen befreit

(c) Sebastian Reineke et al., Nature Communications: CC BY 4.0

Prinzip des reaktiven Ionenätzens zur Herstellung von quasi-periodischen Nanostrukturen.

15.07.2019: Organische Leuchtdioden (OLEDs) haben dank intensiver Forschungsarbeiten in den letzten Jahrzehnten den Elektronikmarkt immer weiter erobert – von OLED-Handydisplays bis zu herausrollbaren Fernsehbildschirmen, die Liste der Anwendungsfelder ist lang.

Im Fokus der aktuellen OLED-Forschung steht derzeit insbesondere die Effizienzsteigerung von weißen OLEDs für Beleuchtungselemente, wie zum Beispiel in Decken- oder Autoinnenbeleuchtung. Für diese Bauteile gelten wesentlich strengere Voraussetzungen in Bezug auf Stabilität, Winkelabstrahlung und Effizienz.

Da Leuchtdioden grundsätzlich nur monochromatisches Licht erzeugen, benutzen die Hersteller für die Erzeugung von weißem Licht verschiedene Verfahren zur additiven Farbmischung.

Seit der ersten Entwicklung von weißen OLEDs in den 1990er Jahren gab es zahlreiche Bemühungen, ein ausgeglichenes Weißspektrum und hohe Leuchtkraft bei einer praktikablen Leuchtdichte zu erreichen. Jedoch liegt die externe Quanteneffizienz (EQE, external quantum efficiency) für weiße OLED-Bauelemente ohne zusätzliche Auskopplungstechniken heute immer noch bei nur 20 bis 40 Prozent. Ungefähr 20 Prozent der erzeugten Lichtteilchen (Photonen) bleiben in der Glasschicht des Bauelementes gefangen. Schuld daran ist die interne Totalreflektion der Teilchen an der Grenzfläche zwischen Glas und Luft. Weitere Photonen werden in den organischen Schichten – ähnlich wie in Glasfaserkabeln – geleitet, wieder andere gehen an der Grenzfläche zur oberen Metallschicht verloren.

In zahlreichen Forschungsvorhaben versuchen Experten, die gefangenen Lichtteilchen aus den OLEDs zu befreien. Ein internationales Forschungsteam unter der Leitung von Dr. Simone Lenk und Prof. Sebastian Reineke von der TU Dresden hat nun eine neue Methode zur Befreiung der Photonen im Fachjournal Nature Communications vorgestellt.

Die Physiker stellen darin ein einfaches, skalierbares und insbesondere lithographiefreies Verfahren zur Erzeugung gezielt regelbarer Nanostrukturen mit gerichteter Zufälligkeit und räumlicher Ordnung vor, das die Effizienz und die winkelabhängige Abstrahlcharakteristik von weißen OLEDs deutlich verbessert. Die Nanostrukturen werden mittels reaktivem Ionenätzen erzeugt. Das bietet den Vorteil, die Topographie der Nanostrukturen über die Einstellung der Prozessparameter gezielt zu kontrollieren.

Um die erzielten Ergebnisse zu verstehen, haben die Wissenschaftler ein optisches Modell entwickelt, mit welchem sich die Effizienzsteigerung der OLEDs erklären lässt. Durch die Integration dieser Nanostrukturen in weiße OLEDs kann eine externe Quanteneffizienz von bis zu 76,3 Prozent erreicht werden.

Für Dr. Simone Lenk eröffnet die neue Methode zahlreiche neue Wege: „Wir hatten bereits lange nach einer Möglichkeit gesucht, Nanostrukturen gezielt zu manipulieren. Mit dem reaktiven Ionenätzen haben wir einen kostengünstigen und für große Flächen nutzbaren Prozess gefunden, welcher sich auch für die industrielle Nutzung eignet. Der Vorteil liegt darin, dass sich Periodizität und Höhe der Nanostrukturen komplett über die Prozessparameter einstellen lassen und dass somit eine optimale Auskopplungsstruktur für weiße OLEDs gefunden werden konnte. Diese quasi-periodischen Nanostrukturen eignen sich nicht nur als Auskoppelstrukturen für OLEDs, sondern besitzen auch das Potential für weitere Anwendungen in der Optik, Biologie und Mechanik.“

Originalveröffentlichung:
Yungui Li, Milan Kovačič, Jasper Westphalen, Steffen Oswald, Zaifei Ma, Christian Hänisch, Paul-Anton Will, Lihui Jiang, Manuela Junghaehnel, Reinhard Scholz, Simone Lenk & Sebastian Reineke; "Tailor-made nanostructures bridging chaos and order for highly efficient white organic light-emitting diodes"; Nature Communications 10

Fakten, Hintergründe, Dossiers

Mehr über TU Dresden

  • News

    Die unsterblichen Krebszellen töten

    Glücklicherweise sind Behandlungen zur Tumorschrumpfung heute in vielen Fällen sehr effizient. Oft jedoch können diese Behandlungen nicht alle Zellen abtöten, was eine Rückkehr des Krebses zur Folge hat. Warum aber schlägt die Therapie bei einigen Krebszellen nicht an? Um dieses Problem zu ... mehr

    Ionische Flüssigkeiten 4.0

    TAAILs - Maßgeschneiderte Designerstoffe: es klingt wie eine hippe neue Modemarke, kommt aber in Wirklichkeit aus dem Chemielabor. Maßgeschneiderte Aryl‐Alkyl‐substituierte ionische Flüssigkeiten (engl. tunable aryl alkyl ionic liquids, TAAILs) sind die vierte Generation ionischer Flüssigke ... mehr

    Elastisch wie Gummi, viskos wie Honig: Immunzellen anhand mechanischer Eigenschaften unterscheiden

    Unterschiedliche Typen von Immunzellen voneinander zu unterscheiden, ohne sie vorher anzufärben – das ist Wissenschaftlern des Deutschen Zentrums für Herz-Kreislauf-Forschung (DZHK), der Universität Greifswald und der Universitätsmedizin Greifswald sowie der Technischen Universität Dresden ... mehr

  • Autoren

    Dr. Torsten Tonn

    Torsten Tonn ist Professor für Transfusionsmedizin an der Medizinischen Fakultät Carl Gustav Carus, Technische Universität Dresden. Er ist ebenfalls Geschäftsführer des DRKBlutspendedienstes Nord-Ost. Vor dieser Stellung leitete er den Bereich für Zell- und Gentherapie des Instituts für Tra ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.