18.06.2019 - Ruhr-Universität Bochum (RUB)

Medikamentenresistenz: Transportproteine vom Transport abhalten

Bestimmte Membranproteine sind darauf spezialisiert, Moleküle aus Zellen zu transportieren – ein Problem für die Wirksamkeit von Krebsmedikamenten und Antibiotika.

Mit einem künstlich hergestellten Antikörperfragment hat ein internationales Forschungsteam den Transportmechanismus eines Membranproteins aus Bakterien untersucht. Die Transportproteine, ABC-Exporter genannt, kommen beispielsweise in den Zellmembranen von Bakterien und in großen Mengen in Krebszellen vor und sind dafür verantwortlich, kleine Moleküle aus den Zellen zu befördern. Einige Transporter können Antibiotika oder Chemotherapie-Wirkstoffe aus den Zellen pumpen und die Therapien somit wirkungslos machen. In der aktuellen Studie arbeiteten die Forscher mit isolierten ABC-Exportern. Sie zeigten, wie die Transportfunktion mit dem Energieantrieb des Proteins zusammenhängt und wie sich beides blockieren lässt.

Für die Studie kooperierten Prof. Dr. Enrica Bordignon und Prof. Dr. Lars Schäfer von der Ruhr-Universität Bochum, beide Mitglied im Exzellenzcluster Ruhr Explores Solvation, mit Prof. Dr. Markus Seeger von der Universität Zürich und Prof. Dr. Mikko Karttunen von der University of Western Ontario.

Mehrstufiger Transportprozess

Beim Transport von Molekülen aus den Zellen verbrauchen ABC-Exporter Energie. Diese beziehen sie aus der Spaltung des Energiespeichermoleküls ATP auf der Innenseite der Membran. Der ABC-Exporter besteht grob gesagt aus drei Bereichen: dem energieliefernden Motor im Inneren der Zelle; einem Verbindungsstück, das sich durch die Zellmembran erstreckt; und einer Pforte auf der Außenseite der Membran.

Für den Transportvorgang öffnet sich der ABC-Exporter im Inneren der Zelle, nimmt ein Molekül aus der Zellflüssigkeit auf und transportiert es bis zur anderen Seite der Membran. Dort öffnet sich die äußere Pforte, und das Molekül wird ausgeschieden – aber nur, wenn der Proteinmotor im Inneren ATP spaltet. Erst wenn die äußere Pforte wieder geschlossen ist, kann der nächste Transportvorgang beginnen.

Motor ausgeschaltet

Die Wissenschaftler entwickelten ein künstliches Antikörperfragment, auch Sybody genannt, das im Reagenzglas an den isolierten ABC-Exporter andockte. Mittels Röntgenkristallographie und Elektronenspinresonanz zeigte das Team, dass der Sybody an die geöffnete äußere Pforte bindet. Dadurch konnte sich die Pforte nicht mehr schließen und somit kein neuer Transportvorgang eingeleitet werden. Als Folge davon blieb der Motor im Inneren abgeschaltet; es wurde kein ATP mehr gespalten.

Die Ergebnisse bestätigte die Gruppe in weiteren Experimenten ohne Sybody. In diesen tauschten sie gezielt einige Aminosäuren des Proteins durch genetische Mutation aus; auch das blockierte den Schließmechanismus der äußeren Pforte und die ATP-Spaltung.

„Unsere Analysen haben gezeigt, dass der Mechanismus zum Öffnen und Schließen der äußeren Pforte strukturell mit der Spaltung des Energielieferanten ATP auf der Innenseite zusammenhängt“, beschreibt Enrica Bordignon. „Bei unseren Ergebnissen handelt es sich um Grundlagenforschung“, so die Leiterin der Bochumer Arbeitsgruppe EPR-Spektroskopie weiter. „Wir hoffen, damit neue Ansätze zur Bekämpfung der Medikamentenresistenz zu eröffnen.“

Fakten, Hintergründe, Dossiers

  • Membranproteine
  • Transportproteine
  • Antikörperfragmente
  • Medikamentenresistenzen

Mehr über Ruhr-Universität Bochum

  • News

    Die Rolle von wassermeidenden Molekülen bei katalytischen Reaktionen

    Mit elektrochemischen Verfahren könnte sich CO2 in nützliche Ausgangsstoffe für die Industrie umwandeln lassen. Um die Prozesse zu optimieren, versuchen Chemiker im Detail zu berechnen, welche Energiekosten durch die verschiedenen Reaktionspartner und -schritte entstehen. Wie kleine wassera ... mehr

    Ein stabiler Kupfer-Katalysator für die CO2-Umwandlung

    Einen neuen Katalysator für die Umwandlung von Kohlendioxid (CO2) in Chemikalien oder Treibstoffe haben Forschende der Ruhr-Universität Bochum und Universität Duisburg-Essen entwickelt. Sie optimierten bereits verfügbare Kupfer-Katalysatoren, um ihre Selektivität und Langzeitstabilität zu v ... mehr

    Leistungsfähige Multi-Element-Katalysatoren schnell identifizieren

    Unter Tausenden Möglichkeiten die beste Materialzusammensetzung zu finden gleicht der Suche nach der Stecknadel im Heuhaufen. Ein internationales Team kombiniert dazu Computersimulationen und Hochdurchsatz-Experimente. Katalysatoren aus mindestens fünf chemischen Elementen könnten der Schlü ... mehr

  • q&more Artikel

    Maßgeschneiderte Liganden eröffnen neue Reaktionswege

    Zum ersten Mal konnte ein effizienter Katalysator für die palladiumkatalysierten C–C-Bindungs-knüpfungen zwischen Arylchloriden und Alkyllithium-Verbindungen gefunden werden. Diese Reaktion ermöglicht einfachere Synthesewege für wichtige Produkte. mehr

    Mit Licht und Strom dem Schicksal einzelner Nanopartikel auf der Spur

    Die Kombination aus Dunkelfeldmikroskopie und Elektrochemie macht einzelne Nanopartikel in flüssigem Medium sichtbar. Hiermit kann die Aktivität von Katalysatoren während ihrer Anwendung ermittelt werden. mehr

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Henning Steinert

    Henning Steinert, Jahrgang 1993, studierte an der Carl‑von‑Ossietzky Universität Oldenburg Chemie, wo er sich unter anderem mit der Aktivierung von Si–H-Bindungen an Titankomplexen beschäftigte. Aktuell promoviert er an der Ruhr-Universität Bochum am Lehrstuhl für Anorganische Chemie II von ... mehr

    Prof. Dr. Viktoria Däschlein-Gessner

    Viktoria Däschlein-Gessner, Jahrgang 1982, studierte Chemie an den Universitäten Marburg und Würzburg und promovierte im Jahr 2009 an der TU Dortmund. Nach einem Postdoc-Aufenthalt an der University of California in Berkeley (USA) leitete sie eine Emmy-Noether-Nachwuchsgruppe an der Univers ... mehr

    Kevin Wonner

    Kevin Wonner, Jahrgang 1995, studierte Chemie mit dem Schwerpunkt der elektrochemischen Untersuchung von Nanopartikeln an der Ruhr-Universität Bochum und ist seit 2018 Doktorand am Lehrstuhl für Analytische Chemie II von Prof. Dr. Kristina Tschulik im Rahmen des Graduiertenkollegs 2376. Er ... mehr

Mehr über Universität Zürich

  • News

    Fettstoffwechsel steuert Gehirnentwicklung

    Ein Enzym des Fettstoffwechsels steuert die Aktivität von Hirnstammzellen und die lebenslange Gehirnentwicklung. Funktioniert das Enzym nicht korrekt, schränkt dies die Lern- und Gedächtnisleistung bei Menschen und Mäusen ein, wie Forschende der Universität Zürich ermittelt haben. Die Regul ... mehr

    Neu entdecktes Protein gibt Signal für Virusinfektion

    Forscher der Universität Zürich haben erstmals ein Protein entdeckt, das die Infektion von menschlichen Zellen durch Adenoviren ermöglicht. Das Eiweiss Mib1 gibt dem Virus das Signal, die DNA zu enthüllen und in den Zellkern zu schleusen. Die Blockierung des Proteins könnte helfen, die für ... mehr

    Antibiotika mit neuartiger Wirkung entdeckt

    Viele lebensbedrohliche Bakterien werden zunehmend resistent gegen Antibiotika. Forschende der Universität Zürich und der Polyphor AG haben eine neue Antibiotikaklasse entdeckt, die gegen mehrere Bakterien wirksam sind und über einen einzigartigen Wirkmechanismus verfügen. Sie blockieren de ... mehr

  • q&more Artikel

    Vom Nachtschwärmer zur Lerche

    Die meisten Menschen kommen aufgrund ihrer Biochronologie entweder als Lerche (Frühaufsteher) oder Eule (Morgenmuffel) zur Welt und in der Pubertät entwickeln sie sich zum Nachtschwärmer. Mit dem 20. Lebensjahr tritt dann eine Wende ein und der Schlaf- und Wachrhythmus verschiebt sich konti ... mehr

  • Autoren

    Dr. Steven A. Brown

    Steven B. Brown studierte Biochemie am Harvard College, Cambridge, Massachusetts, USA. 1997 promovierte er im Fachgebiet Biological Chemistry and Molecular Pharmacology, Harvard University, Cambridge, Massachusetts, USA. Von 1998-2005 war er als Postdoc am Institut für Molekulare Biologie a ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: