q&more
Meine Merkliste
my.chemie.de  
Login  

News

Neues Quantenpunkt-Mikroskop zeigt die elektrischen Potenziale einzelner Atome

Copyright: Forschungszentrum Jülich / Sascha Kreklau

Dr. Christian Wagner mit einem Modell des PTCDA-Moleküls, das bei der neuen Methode als Quantenpunkt dient.

Copyright: Forschungszentrum Jülich / Christian Wagner

Aufnahme eines Rastertunnel-Mikroskops (STM, links) und eines Raster-Quantenpunkt-Mikroskops (SQDM, rechts): Mit Rastertunnel-Mikroskope lässt sich die physische Struktur einer Oberfläche atomgenau vermessen. Die Quantenpunkt-Mikroskopie kann bei ähnlicher Detailtiefe die elektrischen Potenziale auf der Oberfläche abbilden. Eine perfekte Kombination.

17.06.2019: Ein Forscherteam aus Jülich hat in Kooperation mit der Universität Magdeburg eine neue Methode entwickelt, mit der sich die elektrischen Potenziale einer Probe atomgenau vermessen lassen. Mit etablierten Verfahren war es bisher kaum möglich, die elektrischen Potenziale, die sich in der unmittelbaren Nähe einzelner Moleküle oder Atome ausbilden, quantitativ zu erfassen. Das neue Verfahren der Raster-Quantenpunkt-Mikroskopie, das die Wissenschaftler gemeinsam mit Partnern weiterer Einrichtungen in der Fachzeitschrift Nature Materials vorgestellt haben, könnte neue Möglichkeiten eröffnen für die Chipfertigung oder für die Charakterisierung von Biomolekülen wie der DNA.

Die positiven Atomkerne und negativen Elektronen, aus denen alle Materie besteht, erzeugen elektrische Potenzialfelder, die sich schon auf sehr kurzen Distanzen überlagern und ausgleichen. Mit herkömmlichen Verfahren war es bisher kaum möglich, diese kleinräumigen Felder zu vermessen, die für viele stoffliche Eigenschaften und Funktionalitäten auf der Nanoskala verantwortlich sind. Praktisch alle etablierten Verfahren, die solche Potenziale abbilden, beruhen auf einer Messung der Kräfte, die durch elektrische Ladungen hervorgerufenen werden. Doch diese Kräfte lassen sich nur schwer von anderen Kräften unterscheiden, die auf der Nanoskala auftreten, was einer quantitativen Messung im Wege steht.

Vor vier Jahren entdeckten Wissenschaftler des Forschungszentrums Jülich jedoch eine Methode, die auf einem völlig anderen Prinzip basiert. Bei der Raster-Quantenpunkt-Mikroskopie wird ein einzelnes organisches Molekül, der Quantenpunkt, auf die Spitze eines Rasterkraftmikroskops geheftet und dient dann als Sonde. „Das Molekül ist so klein, dass man kontrolliert einzelne Elektronen aus der Spitze des Rasterkraftmikroskops auf das Molekül aufbringen kann“, erklärt Christian Wagner, Leiter der Gruppe „Controlled Mechanical Manipulation of Molecules“ am Jülicher Peter Grünberg Institut (PGI-3).

Die Forscher hatten das Potenzial der Methode sofort erfasst und einen Patentantrag gestellt. Doch bis zur praktischen Anwendung war es noch ein weiter Weg. „Anfangs war es nur ein überraschender Effekt, aber in seiner Anwendbarkeit begrenzt. Das ist jetzt anders. Wir können die elektrischen Felder einzelner Atome und Moleküle nicht nur sichtbar machen. Wir können diese jetzt auch präzise quantifizieren“, erläutert Christian Wagner. „Das hat auch der Vergleich mit theoretischen Rechnungen unserer Kollegen aus Luxemburg belegt. Darüber hinaus können wir große Bereiche einer Probe und somit verschiedenste Nanostrukturen auf einen Schlag abbilden. Für ein detailliertes Bild benötigen wir gerade einmal eine Stunde.“
Jahrelang haben die Jülicher Forscher die Methode untersucht und am Ende eine in sich geschlossene Theorie dazu entwickelt. Der Grund für die sehr scharfen Bilder ist ein Effekt, der es ermöglicht, dass die Mikroskopspitze für die Messung relativ weit von der Probe entfernt sein kann, etwa 2 bis 3 Nanometer – unvorstellbar für ein normales Rasterkraftmikroskop.

Dazu muss man wissen: Alle Elemente einer Probe erzeugen elektrische Felder, die auf den Quantenpunkt einwirken und damit auch gemessen werden. Die Mikroskopspitze wirkt dabei wie ein Schutzschirm, der die störenden elektrischen Felder der weit entfernten Probenbereiche dämpft. „Der Einfluss der abgeschirmten elektrischen Felder fällt so exponentiell ab und der Quantenpunkt detektiert nur den unmittelbar umliegenden Bereich“, erklärt Wagner. „Unsere Auflösung ist dadurch viel schärfer als es selbst bei einer idealen Punktsonde zu erwarten wäre.“

Dass die Vermessung der kompletten Probenoberfläche so schnell vonstattengeht, verdanken die Jülicher Forscher ihren Partnern von der Otto-von-Guericke-Universität Magdeburg. Die Ingenieure entwickelten den Controller, der dazu beiträgt, die komplexe, mehrfache Abtastung der Probe zu automatisieren. „Ein Rasterkraftmikroskop funktioniert ein bisschen wie ein Plattenspieler“, erklärt Wagner. „Die Spitze fährt über die Probe und erstellt so Stück für Stück eine zusammenhängende Darstellung der Oberfläche. Bei der Raster-Quantenpunkt-Mikroskopie mussten wir bisher jedoch an eine Stelle der Probe fahren, ein Spektrum messen, zur nächsten Stelle fahren, ein Spektrum messen und so weiter, um daraus ein Bild zusammenzusetzen. Mit dem Controller der Magdeburger können wir jetzt die ganze Fläche einfach scannen, wie mit einem normalen Rasterkraftmikroskop. Während wir bisher 5 bis 6 Stunden für ein einzelnes Molekül benötigt haben, können wir jetzt Probenbereiche mit Hunderten Molekülen in einer Stunde abbilden.“

Einige Nachteile hat die Quantenpunkt-Methode allerdings noch. Die Vorbereitung der Messungen ist sehr aufwändig. Das Molekül, das als Quantenpunkt für die Messung dient, muss vor der Messung von der Spitze aufgehoben werden – etwas, was nur im Vakuum und bei tiefen Temperaturen möglich ist. Normale Rasterkraftmikroskope dagegen arbeiten auch bei Raumtemperatur, ohne Vakuum, und es sind keine anspruchsvollen Vorbereitungen nötig.

Trotzdem, Prof. Stefan Tautz, Direktor des PGI-3, ist optimistisch: „Das muss unsere Möglichkeiten nicht einschränken. Unsere Methode ist noch neu und wir sind gespannt auf die ersten Projekte, mit denen wir zeigen können, was das Verfahren wirklich leisten kann.“

Einsatzmöglichkeiten für die Quantenpunkt-Mikroskopie gibt es viele. Die Halbleiterelektronik stößt in Größenbereiche vor, bei denen schon ein einzelnes Atom für die Funktionalität entscheidend sein kann. Und auch für andere Funktionsmaterialien, etwa Katalysatoren, spielen elektrostatische Wechselwirkungen eine wichtige Rolle. Die Charakterisierung von Biomolekülen wäre eine andere Option. Aufgrund des vergleichsweise großen Abstands zur Probe eignet sich das Verfahren auch für raue Oberflächen, wie sie etwa das DNA-Molekül mit seiner charakteristischen 3D-Struktur aufweist.

Originalveröffentlichung:
"Quantitative imaging of electric surface potentials with single-atom sensitivity"; Christian Wagner, Matthew. F. B. Green, Michael Maiworm, Philipp Leinen, Taner Esat, Nicola Ferri, Niklas Friedrich, Rolf Findeisen, Alexandre Tkatchenko, Ruslan Temirov, F. Stefan Tautz; Nature Materials (published online 10 June 2019)

Fakten, Hintergründe, Dossiers

  • Raster-Quantenpunkt…

Mehr über Forschungszentrum Jülich

  • News

    Eckpfeiler der Physik muss ergänzt werden

    Atomkerne und Elektronen in Festkörpern beeinflussen sich gegenseitig in ihren Bewegungen – und das nicht nur in seltenen Ausnahmefällen, wie bisher angenommen. Das haben Wissenschaftler des Forschungszentrums Jülich und der Technischen Universität München (TUM) bei Messungen am Heinz Maier ... mehr

    Energiereiche Festkörperbatterie: Hohe Energiedichte mit Lithium-Anode und Hybridelektrolyt

    Wissenschaftler des Forschungszentrums Jülich und der Universität Münster haben eine neue Festkörperbatterie vorgestellt, die über eine Anode aus reinem Lithium verfügt. Lithium gilt als ideales Elektrodenmaterial, mit dem sich die höchsten Energiedichten erreichen lassen. Das Metall ist se ... mehr

    Künstliche Synapse aus Nanodrähten

    Jülicher Forscher haben gemeinsam mit Kollegen aus Aachen und Turin ein Schaltelement aus Nanodrähten hergestellt, das ganz ähnlich wie eine biologische Nervenzelle funktioniert. Ihr Bauelement kann sowohl Informationen speichern als auch verarbeiten – und mehrere Signale parallel empfangen ... mehr

  • q&more Artikel

    Makromolekulare Umgebungen beeinflussen Proteine

    Eine intensive Wechselwirkung von Proteinen mit anderen Makromolekülen kann wichtige Eigenschaften von Proteinen wie z. B. die Translationsbeweglichkeit oder den Konformationszustand signifi kant verändern. mehr

    Koffein-Kick

    Koffein ist die weltweit am weitesten verbreitete psycho­aktive Substanz. Sie findet sich als Wirkstoff in Getränken wie Kaffee, Tee und sog. Energy Drinks. Koffein kann Vigilanz und Aufmerksamkeit erhöhen, Schläfrigkeit reduzieren und die kognitive Leistungsfähigkeit steigern. Seine neurob ... mehr

  • Autoren

    Prof. Dr. Jörg Fitter

    Jg. 1963, studierte Physik an der Universität Hamburg. Nach seiner Promotion an der FU Berlin war er im Bereich der Neutronenstreuung und der molekularen Biophysik am HahnMeitnerInstitut in Berlin und am Forschungszentrum Jülich tätig. Er habilitierte sich in der Physikalischen Biologie der ... mehr

    Dr. David Elmenhorst

    David Elmenhorst, geb. 1975, studierte Medizin in Aachen und promovierte am Deutschen Zentrum für Luft- und Raumfahrt in Köln im Bereich der Schlafforschung. 2008/2009 war er Gastwissenschaftler am Brain Imaging Center des Montreal Neuro­logical Institut in Kanada. Seit 2003 ist er in der A ... mehr

    Prof. Dr. Andreas Bauer

    Andreas Bauer, geb. 1962, studierte Medizin und Philo­sophie in Aachen, Köln und Düsseldorf, wo er auf dem Gebiet der Neurorezeptorautoradiografie promovierte. Seine Facharztausbildung absolvierte er an der Universitätsklinik Köln, er habilitierte an der Universität Düsseldorf im Fach Neuro ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.