q&more
Meine Merkliste
my.chemie.de  
Login  

News

Chemischer Jonglage-Akt mit drei Teilchen

© Foto: Volker Lannert/Uni Bonn

Prof. Dr. Andreas Gansäuer und Anastasia Panfilova bei der Epoxidhydrierung im Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn.

27.05.2019: Chemiker der Universität Bonn haben zusammen mit US-Kollegen der Columbia University in New York einen neuartigen Katalyse-Mechanismus entdeckt. Mit ihm lassen sich bestimmte Alkohole kostengünstiger und umweltfreundlicher herstellen als bisher. Die Reaktion folgt einem bislang unbekannten Schema, bei dem Wasserstoff zeitlich koordiniert in drei Bestandteilen übertragen wird. Zwischen der Idee und ihrer praktischen Umsetzung liegen mehr als fünf Jahre.

lkohole sind chemische Verbindungen, die neben Kohlenstoff und Wasserstoff mindestens eine so genannte OH-Gruppe enthalten. Sie dienen als Ausgangsstoff für eine ganze Reihe chemischer Synthesen. Ihrerseits werden sie oft aus bestimmten Kohlenwasserstoffketten hergestellt, den Olefinen. Die Alkohole erhält man, indem ein Olefin mit Wasser (chemische Formel: H2O) umsetzt. Das Wasser-Molekül dient dabei als „Spender“ der für Alkohole charakteristischen OH-Gruppe.

Diese Art der Synthese ist simpel und effizient, hat aber einen entscheidenden Nachteil: Mit ihr lassen sich nur bestimmte Alkohole erzeugen, die so genannten „Markovnikov-Alkohole“. Die OH-Gruppe lässt sich nämlich nicht einfach an beliebige Stellen des Olefins anhängen – manche Positionen sind dabei ausgeschlossen. „Wir haben nun eine Katalyse-Methode gefunden, die genau diese `unmöglichen´ Alkohole erzeugen kann“, erklärt Prof. Dr. Andreas Gansäuer.

Gansäuer arbeitet am Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn. Bereits 2014 entstand dort die Idee zu der neuartigen Synthese. Für ihre Verwirklichung tat er sich mit der Arbeitsgruppe um Prof. Dr. Jack Norton von der Columbia-Universität in New York zusammen. Bis zur ersten Herstellung eines so genannten „Anti-Markovnikov-Alkohols“ mit der neuen Katalyse dauerte es dann aber noch fast fünf Jahre.

Beschleunigungs- und Bremsgruppen synchronisieren die Reaktionen

Dass die beiden Gruppen es mit ihrem Erfolg in das renommierte Wissenschaftsmagazin Science schafften, liegt wohl hauptsächlich an dem ungewöhnlichen Reaktionsmechanismus. Als Ausgangsstoff dienen ihnen Epoxide, häufige und wertvolle Zwischenprodukte der chemischen Industrie. Epoxide lassen sich erzeugen, indem man auf Olefine ein Sauerstoffatom (chemisch: O) überträgt. Wenn man sie mit Wasserstoff-Molekülen (H2) reagieren lässt, wird aus dem Sauerstoff eine OH-Gruppe. Dabei entstehen aber im Normalfall ebenfalls nur Markovnikov-Alkohole.

„Bei unserer Reaktion übertragen wir den Wasserstoff jedoch sukzessive in drei Teilen“, erklärt Gansäuer. „Zunächst ein negativ geladenes Elektron, dann ein neutrales Wasserstoff-Atom und schließlich ein positiv geladenes Wasserstoff-Ion, ein Proton. Dazu nutzen wir zwei Katalysatoren, von denen einer Titan und der andere Chrom enthält. So können wir Epoxide zu Anti-Markovnikov-Alkoholen umsetzen.“ Das Ganze muss zeitlich streng koordiniert stattfinden – wie bei einer Jonglage, bei der jeder Ball eine vorgegebene Flugdauer einhalten muss. Um das zu erreichen, mussten die Chemiker die Geschwindigkeit der drei Katalysereaktionen synchronisieren. Zu diesem Zweck verknüpften sie die Titan- und Chrom-Atome mit Liganden, also mit an die Metalle gebundene Moleküle, die genau das möglich machen.

Bislang werden Anti-Markovnikov-Alkohole durch eine so genannte Hydroborierung mit nachfolgender Oxidation hergestellt. Diese Reaktion ist aber relativ komplex und zudem nicht besonders nachhaltig. Bei dem neuen Mechanismus entstehen dagegen keine Nebenprodukte – sie ist damit praktisch abfallfrei. „Titan und Chrom sind zudem sehr häufige Metalle, im Gegensatz zu vielen anderen Katalysatoren“, betont Gansäuer.

Originalveröffentlichung:
Chengbo Yao, Tobias Dahmen, Andreas Gansäuer, Jack Norton: "Anti-Markovnikov alcohols via epoxide hydrogenation through cooperative catalysis."; Science.

Fakten, Hintergründe, Dossiers

Mehr über Universität Bonn

  • News

    Epilepsie: Funktion von „Brems-Zellen“ gestört

    Bei manchen Formen der Epilepsie ist vermutlich die Funktion bestimmter „Brems-Zellen“ im Gehirn gestört. Möglicherweise ist das ein Grund, warum sich die elektrische Fehlfunktion vom Ort ihrer Entstehung über weite Teile des Gehirns ausbreiten kann. In diese Richtung deutet zumindest eine ... mehr

    Wie Künstliche Intelligenz seltene Krankheiten aufspürt

    Weltweit werden rund eine halbe Million Kinder Jahr für Jahr mit einer seltenen Erbkrankheit geboren. Eine sichere Diagnose ist schwierig und langwierig. Wissenschaftler der Universität Bonn und der Charité – Universitätsmedizin Berlin zeigen in einer Studie an 679 Patienten mit 105 verschi ... mehr

    Neue Methode ermöglicht „Fotografieren“ von Enzymen

    Wissenschaftler der Universität Bonn haben eine Methode entwickelt, mit der ein Enzym gewissermaßen bei der Arbeit „fotografiert“ werden kann. Ihr Verfahren ermöglicht es, die Funktionsweise wichtiger Biomoleküle besser zu verstehen. Die Forscher erhoffen sich zudem Einblicke in die Ursache ... mehr

  • Autoren

    Prof. Dr. Jürgen Bajorath

    Jürgen Bajorath hat Biochemie studiert und an der Freien Universität Berlin promoviert. Nach seinem Postdoc-Aufenthalt bei Biosym Technologies in San Diego war er für mehr als 10 Jahre in der US-amerikanischen Pharmaforschung tätig und hatte ebenfalls akademische Posi­tionen, zuletzt war er ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.