q&more
Meine Merkliste
my.chemie.de  
Login  

News

Neues Messinstrument: Kohlenstoffdioxid als Geothermometer

Forscher quantifizieren mithilfe der Laserspektroskopie seltene CO2-Varianten

I. Prokhorov

Temperaturabhängige Änderung der CO2-Isotopologenverteilung: Bei niedrigen Temperaturen tritt deutlich häufiger ein Molekül mit seltenen Isotopen auf. Das Foto zeigt den Austritt von CO2 aus einem hydrothermalen System, dem Geysir Andernach.

22.05.2019: Mit einem neuartigen Laserinstrument ist es erstmals möglich, vier seltene Molekülvarianten des Kohlendioxids (CO2) gleichzeitig und mit höchster Genauigkeit zu messen. Auf diese Weise kann die Temperatur bei der Bildung von CO2-bindenden Karbonaten und karbonatischen Fossilien völlig unabhängig von anderen Parametern bestimmt werden. Als eine neue Art von Geothermometer ist das auf Laserspektroskopie basierende Messinstrument von Bedeutung für Wissenschaftsdisziplinen, die sich zum Beispiel mit klimatischen Verhältnissen in der erdgeschichtlichen Vergangenheit beschäftigen. Entwickelt wurde es von einem deutsch-französischen Forscherteam. Maßgeblich daran beteiligt waren Umweltphysiker der Universität Heidelberg.

Die Wissenschaft untersucht die Verteilung der atomaren Bausteine von Kohlendioxid, um wichtige geochemische und biogeochemische Zyklen sowie klimatische Prozesse auf unserem Planeten zu ergründen. Das Wissen über Eis- und Warmzeitphasen der Erdgeschichte beruht zu einem wesentlichen Teil auf dieser Methodik. Genutzt wird die Analyse der isotopischen Verteilung des Kohlenstoffdioxids auch für Karbonate, in denen CO2 mineralisiert wird. Ein neuartiger Ansatz beschäftigt sich mit der Isotopenverteilung zwischen verschiedenen Varianten desselben Moleküls, insbesondere seltenen Molekülvarianten.

Erst seit wenigen Jahren ist es möglich, die atomare Zusammensetzung von CO2 und Karbonat mittels hochpräziser Massenspektrometrie zu bestimmen – und zwar so, dass aus der relativen Häufigkeit, mit der mehrere Varianten eines Moleküls auftreten, direkt auf die Bildungstemperatur des Karbonats geschlossen werden kann. Im thermodynamischen Gleichgewicht hängt die Verteilung der Isotope zwischen den verschiedenen Varianten nur von der Temperatur ab und wird nicht von anderen Parametern beeinflusst. „Damit hat sich diese Bestimmungsmethode als ein besonders robustes und einzigartiges physikalisches Thermometer in der Geophysik und der Klimaforschung erwiesen“, sagt Dr. Tobias Kluge, der am Institut für Umweltphysik der Universität Heidelberg zur Physik der Isotopologen forscht.

Um die seltenen CO2-Varianten mit höchster Genauigkeit – genauer als 1 in 20.000 – zu quantifizieren, nutzt das deutsch-französische Team nun erstmals Infrarotlaser, was nach den Worten von Dr. Kluge einen grundlegenden technischen Durchbruch darstellt. Im Rahmen einer Pilotstudie mit verschiedenen hydrothermalen Systemen des Oberrheingrabens ist es den Wissenschaftlern gelungen, anhand von CO2 mit ihrem neuen Laserinstrument Temperaturen zu bestimmen, die im Allgemeinen denen des lokalen Grundwassers entsprachen. „Die Temperaturmessungen stimmten dabei auch mit den Ergebnissen der gleichzeitig durchgeführten massenspektrometrischen Analysen überein“, erklärt Ivan Prokhorov, der Erstautor der Studie, der an der Heidelberger Graduiertenschule für Fundamentale Physik der Ruperto promoviert wurde und nun an der Physikalisch-Technischen Bundesanstalt in Braunschweig tätig ist.

Nach Angaben von Dr. Christof Janssen vom Centre National de la Recherche Scientifique (CNRS) in Paris könnte die Weiterentwicklung der Technik schnell die Genauigkeit der Massenspektrometrie überschreiten und zusätzlich eine drastische Verkürzung der Messzeiten ermöglichen. Damit sollen künftig auch Feldmessungen möglich sein. Ein besonderer Vorteil des Laserinstruments ist sein direkter Zugriff auf die Messvariable Temperatur, wie Dr. Kluge erläutert. Allein durch den Vergleich, wie häufig die untersuchten Molekülvarianten auftreten, lässt sich die Temperatur von CO2 unzweideutig bestimmen, während bei der Massenspektrometrie immer Kalibrationen und regelmäßig Standardmessungen erforderlich sind. „Wir blicken bereits in die Zukunft und arbeiten daran, die Möglichkeiten zur Messung von noch selteneren und bislang unerreichbaren Isotopenvarianten umzusetzen. Damit lassen sich dann auch noch komplexere biogeochemische Prozesse quantitativ auswerten“, sagt der Heidelberger Wissenschaftler.

Originalveröffentlichung:
I. Prokhorov, T. Kluge, C. Janssen; "Optical clumped isotope thermometry of carbon dioxide"; Scientific Reports; 9:4765 (2019)

Fakten, Hintergründe, Dossiers

  • Geochemie
  • Carbonate

Mehr über Ruprecht-Karls-Universität Heidelberg

  • News

    Zweigesichtige Stammzellen produzieren Holz und Bast

    Für einen der wichtigsten Wachstumsprozesse auf der Erde – die Holzbildung – sind sogenannte zweigesichtige Stammzellen verantwortlich: Sie bilden nicht nur den Ausgangspunkt für die Entstehung von Holz, sondern auch für die Erzeugung von pflanzlichem Bast, indem sie sich abwechselnd zu Hol ... mehr

    Präzise Veränderung des Erbguts – mit Licht

    Casanova, ein italienischer Schriftsteller aus dem 18. Jahrhundert, wird aufgrund seiner zahlreichen Liebschaften mit den Damen der Zeit noch heute im Volksmund zitiert. Das gleichnamige molekulare Präzisionswerkzeug, das Wissenschaftler aus Heidelberg und Berlin entwickelt haben, hat auf d ... mehr

    Präzise Genreparatur mit hoher Effizienz

    Mit der molekulargenetischen Methode CRISPR/Cas können Brüche im Doppelstrang der DNA und damit zufällige Mutationen in jedem Zielgen herbeigeführt werden. Die exakte Reparatur eines Gens mithilfe einer Reparaturkopie ist jedoch nur außerordentlich aufwendig möglich. Dafür haben Forscher de ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.