q&more
Meine Merkliste
my.chemie.de  
Login  

News

Wundheilung mit der Kraft der Nanofaser

© MPI-P, License CC-BY-SA

Auf einem stabilen Bionetzwerk (blau) können Nervenzellen (grün) wachsen und haften, um so die Heilung eines durchtrennten Nervs zu unterstützen.

03.05.2019: Die Heilung von Verletzungen, insbesondere von durchtrennten Nervenbahnen, erfordert heutzutage aufwändige Methoden, wie z. B. das Zusammennähen der beiden entstandenen Nervenstümpfe. Wissenschaftler des Arbeitskreises von Prof. Tanja Weil (Max-Planck-Institut für Polymerforschung) haben nun unter der Leitung von Dr. Christopher Synatschke in einer Kooperation mit Forschern um Prof. Bernd Knöll vom Institut für Physiologische Chemie der Universität Ulm ein neuartiges Biomaterial entwickelt, welches die Selbstheilungskräfte des Körpers unterstützen könnte.

Bei Verletzungen des sogenannten peripheren Nervensystems, wie sie oftmals durch Unfälle zustande kommen, hängt die Heilungschance sehr stark davon ab, ob die Nervenbahnen noch teilweise verbunden sind bzw. wie groß die Lücke zwischen zwei Nervenenden ist. Bei Lücken im Bereich von Millimetern bis Zentimetern ist heute eine Operation die Standard-Behandlungsmethode, die zumindest eine teilweise Regeneration verspricht. Bei dieser werden die getrennten Nervenenden wieder miteinander vernäht. Ziel ist es somit, die Nervenenden nahe zusammenzubringen, damit die verbleibende kleine Lücke durch die Bildung von Zellen durch den Körper geschlossen wird.

Wissenschaftler um Gruppenleiter Christopher Synatschke, Direktorin Tanja Weil und Arbeitsgruppenleiter Bernd Knöll arbeiten gemeinsam an der Entwicklung von Flüssigkeiten, die sogenannte Nanofasern enthalten. Hierbei handelt es sich um in Wasser gelöste Molekülstränge mit einer Dicke im Bereich von einigen milliardstel Metern. Diese dienen als Gerüst bzw. Haftgrund für Zellen und sind für den menschlichen Körper ungiftig. Eine solche Faser besteht aus sogenannten Peptiden – kurzen Ketten von Aminosäuren, wie sie auch in menschlichen Proteinen vorkommen. Diese Ketten können ein zweidimensionales Gitter bzw. dreidimensionales Netzwerk bilden, an dem Zellen wie Nervenzellen oder auch Muskelzellen anhaften können.

Die von Synatschke und Kollegen entwickelte Flüssigkeit kann durch Spritzen in Wunden eingebracht werden. Dort verbleibt sie für viele Wochen, bevor sie durch körpereigene Prozesse abgebaut wird.

Die Herausforderung bei der Herstellung eines peptidbasierten Bionetzwerks ist es, aus der Vielzahl an möglichen Kombinationsmöglichkeiten von Molekülen - sogenannten Sequenzen - diejenigen zu identifizieren, welche eine gute Biokompatibilität mit optimaler Zellanhaftung vereinen. Hierzu haben die Wissenschaftler zunächst eine Reihe von Nanofasern mit systematischen Veränderungen ihrer Peptidsequenz hergestellt und in Zellkulturen getestet. Mittels detaillierter molekularer Analysen und einem computergestützten Algorithmus konnten wiederkehrende Merkmale in der Molekülstruktur identifiziert werden, die eine hohe Eignung für die Regeneration von Nervenzellen erwarten lassen. Die so identifizierten Peptidsequenzen wurden anschließend in einer Reihe von Zelltests eingehend auf ihre Fähigkeit, neuronales Wachstum zu unterstützen, untersucht.

„Unser Bionetzwerk kann man sich ähnlich wie ein Rankgitter für Tomatenpflanzen vorstellen“, so Synatschke. „Ohne Gitter können die Pflanzen nicht in die Höhe wachsen. Wir haben – übertragen auf Tomatenpflanzen - ein Gitter ausgewählt, an dem die Pflanze besonders gut haften kann. In einem miniaturisierten Maßstab hilft unser Material den Nervenzellen, die Kluft zwischen zwei Nervenenden zu überbrücken.“

Um die Funktionsfähigkeit des besten Materials realitätsnah zu überprüfen, wurde in Kooperation mit der Universität Ulm Mäusen in einem minimalen chirurgischen Eingriff ein Gesichtsnerv durchtrennt, der den für die Schnurrhaare zuständigen Muskel steuert. Über Videoaufnahmen beobachteten die Forscher die Mäuse über einen Zeitraum von mehreren Wochen. Sie konnten bei Mäusen, bei denen in den künstlich erzeugten Zwischenraum zwischen den Nervenenden Biomaterial injiziert wurde, eine schnellere und umfassendere Genesung feststellen, als dies bei nicht behandelten Mäusen der Fall war.

Die Forscher hoffen, in Zukunft nach weiteren eingehenden medizinischen Studien eine alternative Methode zu entwickeln, um auch beim Menschen Nervenschädigungen mit Hilfe eines Bionetzwerk-Gerüsts in der Wunde zu behandeln.

Die Wissenschaftler vermuten, dass körpereigene, wachstumsfördernde Proteine durch die hergestellten Peptid-Ketten länger in der Wunde verbleiben. In Zukunft wäre es daher denkbar, die Ketten so zu funktionalisieren, dass zusätzlich zu der Gerüststruktur noch zellwachstumsfördernde Moleküle mit in das Biomaterial eingebracht werden können, um so deren Heilungspotential noch weiter zu erhöhen.

Originalveröffentlichung:
Schilling, C., Mack, T., Lickfett, S., Sieste, S., Ruggeri, F. S., Sneideris, T., Dutta, A., Bereau, T., Naraghi, R., Sinske, D., Knowles, T. P. J., Synatschke, C. V., Weil, T., Knöll, B.; "Sequence‐Optimized Peptide Nanofibers as Growth Stimulators for Regeneration of Peripheral Neurons"; Adv. Funct. Mater., 2019, 1809112.

Fakten, Hintergründe, Dossiers

  • Biomaterialien
  • Nanofasern
  • Nervenzellen
  • Wundheilung

Mehr über MPI für Polymerforschung

  • News

    Wie man effiziente Materialien für OLED-Displays entwickelt

    Für Anwendungen wie Leuchtdioden oder Solarzellen stehen heute organische Materialien im Mittelpunkt der Forschung. Diese organischen Moleküle könnten eine vielversprechende Alternative zu den bisher verwendeten Halbleitern wie Silizium oder Germanium sein und werden in OLED-Displays einges ... mehr

    Nanodiamanten im Gehirn

    Die Aufnahme von Bildern des menschlichen Gehirns sowie dessen Therapie bei neurodegenerativen Erkrankungen ist in der aktuellen medizinischen Forschung noch immer eine große Herausforderung. Die sogenannte Blut-Hirn-Schranke, eine Art Filtersystem des Körpers zwischen Blutkreislauf und dem ... mehr

    Nano-3D-Drucken für medizinische Anwendungen

    Personalisierte Wirkstoffabgabe oder nanometergroße robotische Systeme könnten ein Schlüsselkonzept für zukünftige medizinische Anwendungen darstellen. In diesem Zusammenhang haben Wissenschaftler um David Ng (Arbeitskreis Prof. Tanja Weil) vom Max-Planck-Institut für Polymerforschung (MPI- ... mehr

Mehr über Max-Planck-Gesellschaft

  • News

    Genetische Vielfalt hilft in der Krebstherapie

    Die ständige Auseinandersetzung mit Krankheitserregern hat das Immunsystem des Menschen im Laufe der Evolution entscheidend geprägt. Eine Schlüsselrolle spielen dabei sogenannte HLA-Moleküle. Diese Proteine präsentieren dem Immunsystem Fragmente von eingedrungenen Krankheitserreger und akti ... mehr

    Wie Zellen unsere Organe dichthalten

    Unsere Organe sind spezialisierte Kompartimente mit jeweils eigenem Milieu und Funktion. Um unsere Organe nach außen abzudichten, müssen die Zellen im Epithelgewebe eine Barriere bilden, die sogar für Moleküle dicht ist. Diese Barriere wird durch einen Proteinkomplex gebildet, der alle Zell ... mehr

    Krankheitserreger aus dem Meer

    Im Küstenbereich der Meere lebt das Bakterium Vibrio parahaemolyticus, einer der Hauptverursacher von Magen-Darm-Infektionen beim Menschen. Ein Forscherteam um Simon Ringaard vom Max-Planck-Institut für terrestrische Mikrobiologie in Marburg untersucht, wie sich die Bakterien an die wechsel ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.