q&more
Meine Merkliste
my.chemie.de  
Login  

News

Flemings Methode im Miniformat

Neue Technologie identifiziert eine Reihe neuer Antibiotika-Kandidaten

ETH Zürich / Steven Schmitt und Helena Shomar

Mikro-Gel-Kügelchen mit grün fluoreszierenden Sensor-Bakterien. In einem der Kügelchen (Mitte) wurden die Sensor-Bakterien von einem Wirkstoff abgetötet (mikroskopische Aufnahme).

02.05.2019: Forscher am Departement für Biosysteme der ETH Zürich in Basel haben eine Methode entwickelt, mit der sie schnell eine sehr grosse Anzahl an Molekülen auf ihre antibiotische Wirkung testen können. Sie entdeckten damit neue Kandidaten für Antibiotika. In Zukunft möchten sie mit dem Verfahren auch Bodenproben und das Mikrobiom auf der menschlichen Haut auf medizinisch interessante Organismen hin untersuchen.

Unbeabsichtigt gelangte vor 90 Jahren ein Schimmelpilz auf eine Bakterienkultur in Alexander Flemings Labor. Der schottische Bakteriologe beobachtete, dass der Pilz einen Stoff produzierte, der die Bakterien auf der Zellkulturplatte abtötete. Er entdeckte so Penicillin, eines der ersten Antibiotika. Mittlerweile gibt es mehrere Dutzend Klassen von Antibiotika, und die Wissenschaft sucht weiterhin unermüdlich nach neuen antimikrobiellen Wirkstoffen, weil diese in der Medizin dringend benötigt werden. Ein Grossteil dieser Medikamente sind Naturstoffe oder bauen auf diesen auf. Und noch immer ist die Nachweismethode dieselbe wie zu Flemings Zeiten: Ein Antibiotikum ist ein Stoff, der auf einer Zellkulturplatte Bakterien abzutöten vermag.

Wissenschaftler um Steven Schmitt aus der Gruppe von ETH-Professor Sven Panke am Department für Biosysteme der ETH Zürich in Basel haben nun Flemings Methode modernisiert und miniaturisiert und sie so fit gemacht für die Hochdurchsatz-Analyse von Mikroorganismen und den von ihnen produzierten Wirkstoffen. «Während es heute mit herkömmlichen Methoden bis zu einem Jahr dauert, um 10'000 Wirkstoffproduzenten zu testen, können wir innerhalb von wenigen Tagen Millionen von Varianten untersuchen», sagt Schmitt, der die Methode in seiner Doktorarbeit an der ETH entwickelte.

Mit der neuen Technologie ist es den ETH-Wissenschaftlern gemeinsam mit niederländischen und deutschen Kollegen gelungen, eine Reihe neuer Antibiotika-Kandidaten zu identifizieren. Nun werden die Forscher in einem nächsten Schritt untersuchen, ob sich unter diesen Kandidaten auch solche befinden, die sich für eine Anwendung in der Medizin eignen.

«Bubble Tea» für die Wirkstoffsuche

Was bei Alexander Fleming eine Zellkulturschale mit einem Durchmesser von zehn Zentimetern war, sind in der neuen, «Nano-Fleming» genannten Technik kleine Gel-Kügelchen von bloss einem halben Millimeter – ähnlich wie «Bubble Tea» oder Kaviar-Imitat aus der Molekularküche. In diesen Kügelchen können die Wissenschaftler neue Stoffe auf ihre antibiotische Wirkung hin testen. Sie betten dazu in die Kügelchen einerseits mehrere Sensor-Bakterien ein und andererseits pro Kügelchen jeweils einen Mikroorganismus, der einen zu testenden und potenziell antibiotisch wirkenden Stoff produziert.

Wirkt der produzierte Stoff tatsächlich antibiotisch, sterben die Sensor-Bakterien ab. Wirkt er nicht, vermehren sie sich und bilden Zellhaufen. Nachdem die Wissenschaftler die Sensor-Bakterien mit einem Fluoreszenz-Farbstoff markieren, können sie die nur schwach fluoreszierenden Gel-Kügelchen mithilfe einer Hochdurchsatz-Sortierungsmethode aussortieren. In ihnen befindet sich ein Mikroorganismus, der ein wirksames Antibiotikum produzierte. Anschliessend können die Wissenschaftler diesen Wirkstoff identifizieren.

Wirksamere Antibiotika

In der aktuellen Arbeit, welche die Forscher im Fachmagazin Nature Chemical Biology veröffentlichten, testeten sie eine Sammlung von 6000 Peptiden (kurzen Proteinen) auf ihre antibiotische Wirkung. Es handelte sich dabei um Moleküle, die einer Gruppe von bekannten Peptid-Antibiotika, sogenannten Lantibiotika, ähnlich sind. Die Wissenschaftler wollten untersuchen, ob es durch eine intelligente Veränderung der molekularen Struktur der Lantibiotika möglich ist, ihre Wirksamkeit zu erhöhen oder bekannte Resistenzmechanismen zu umgehen.

Zusammen mit den niederländischen und deutschen Kollegen gingen sie von bekannten Lantibiotika und ihren strukturellen und funktionellen Untereinheiten aus. In einem biotechnologischen Ansatz kombinierten sie die Untereinheiten verschiedener Lantibiotika auf alle erdenklichen Weisen und fertigten so eine Sammlung von Mikroorganismen an, welche diese neukombinierten Peptide herstellen. Diese Mikroorganismen testeten sie anschliessend mit der «Nano-Fleming»-Methode. Tatsächlich fanden sie elf Peptide, die im Vergleich zu den bekannten Lantibiotika entweder in kleinerer Dosis wirken oder in der Lage sind, bekannte Resistenzmechanismen auszutricksen.

Suche in der Natur

«Mit der Methode lässt sich auch hervorragend untersuchen, ob Mikroorganismen aus der Natur bisher unentdeckte Wirkstoffe produzieren», sagt Schmitt. Dass Mikroben versuchten, ihre Konkurrenten mit biochemischen Verbindungen auszuschalten, sei ein natürlicher und verbreiteter Mechanismus. Möglicherweise finde man daher in Lebensräumen wie Bodenproben oder dem noch wenig untersuchten Mikrobiom auf der menschlichen Haut und im Speichel neue Antibiotikaklassen. Mit der neuen Technik könnten Mikroorganismen aus diesen Lebensräumen sehr gut analysiert werden. «Und weil wir nun in kurzer Zeit sehr viel mehr Wirkstoffproduzenten testen können als mit bisherigen Methoden, erhöht sich die Chance, Wirkstoffe von seltenen Mikroorganismen zu entdecken.»

Ebenso könnte die Technik angepasst werden, um weitere Kriterien für Antibiotika gleich bei der ersten Analyse zu testen, etwa die Stabilität in der menschlichen Blutbahn oder die Umgehung von Resistenzmechanismen. Oder es wäre möglich, die Gel-Kügelchen mit verschiedenen Sensor-Bakterien zu bestücken – solchen, die ein Wirkstoff unbedingt abtöten soll, zum Beispiel Krankheitserregern, und anderen, denen er keinesfalls schaden soll, beispielsweise Bakterien der gesunden Haut- oder Mundflora.  

Weiterentwicklungen wie diese plant Schmitt nun im Rahmen seines ETH-Pioneer-Fellowships sowie eines Bridge-Stipendiums, mit dem der Schweizerische Nationalfonds und Innosuisse gemeinsam Entwicklungen an der Schnittstelle von Hochschulen und Industrie fördert. Ebenfalls in Planung ist die Gründung eines Spin-offs, um die Methode zu kommerzialisieren.

Originalveröffentlichung:
Schmitt S, Montalbán-López M, Peterhoff D, Deng J, Wagner R, Held M, Kuipers OP, Panke S; "Analysis of modular bioengineered antimicrobial lanthipeptides at nanoliter scale"; Nature Chemical Biology; 2019, 15: 437

Fakten, Hintergründe, Dossiers

  • Antibiotika
  • Bakterien
  • Hochdurchsatzanalysen
  • Hochdurchsatz-Screening
  • Mikroorganismen
  • Wirkstoffsuche
  • Wirkstofftestsysteme
  • Lantibiotika
  • Wirkstoffe

Mehr über ETH Zürich

  • News

    Wenn sich Sand wie Öl verhält

    Sand, Kaffeepulver oder Reis verhalten sich ganz anders als Wasser und Öl. Doch unter gewissen Bedingungen zeigen sich plötzlich erstaunliche Ähnlichkeiten. Wissenschaftler haben einen Weg gefunden, wie sie das Verhalten von körnigen Materialien besser verstehen können. Körnige Materialien ... mehr

    Im Labyrinth offenbaren Bakterien ihre Individualität

    Forscher der ETH Zürich weisen nach, dass genetisch identische Zellen individuell unterschiedlich auf chemische Lockstoffe reagieren. Mit Durchschnittswerten lässt sich das Verhalten von Bakterien nur ungenügend beschreiben. Sie gelten als die einfachsten Lebensformen. Doch selbst Mikroorga ... mehr

    Wasser, das nie zu Eis wird

    Gibt es Wasser, das selbst bei minus 263 Grad Celsius nicht zu Eis gefriert? Ja, das gibt es, sagen Forscher der ETH Zürich und der Universität Zürich. Nämlich dann, wenn es in wenige Nanometer dünnen Kanälen aus Lipiden «gefangen» ist. Eiswürfel herzustellen ist simpel: Man nehme eine Eisw ... mehr

  • q&more Artikel

    Analytik in Picoliter-Volumina

    Zeit, Kosten und personellen Aufwand senken – viele grundlegende sowie angewandte analytische und diagnostische Herausforderungen können mit Lab-on-a-Chip-Systemen realisiert werden. Sie erlauben die Verringerung von Probenmengen, die Automatisierung und Parallelisierung von Arbeitsschritte ... mehr

    Investition für die Zukunft

    Dies ist das ganz besondere Anliegen und gleichzeitig der Anspruch von Frau Dr. Irmgard Werner, die als Dozentin an der ETH Zürich jährlich rund 65 Pharmaziestudenten im 5. Semester im Praktikum „pharmazeutische Analytik“ betreut. Mit Freude und Begeisterung für ihr Fach stellt sie sich imm ... mehr

  • Autoren

    Prof. Dr. Petra S. Dittrich

    Jg. 1974, ist Außerordentliche Professorin am Department Biosysteme der ETH Zürich. Sie studierte Chemie an der Universität Bielefeld und Universidad de Salamanca (Spanien). Nach der Promotion am Max-Planck-Institut für biophysikalische Chemie in Göttingen war sie Postdoktorandin am ISAS In ... mehr

    Dr. Felix Kurth

    Jg. 1982, studierte Bioingenieurwesen an der Technischen Universität Dortmund und an der Königlich Technischen Hochschule in Stockholm. Für seine Promotion, die er 2015 von der Eidgenössisch Technischen Hochschule in Zürich erlangte, entwickelte er Lab-on-a-Chip Systeme und Methoden zur Qua ... mehr

    Lucas Armbrecht

    Jg. 1989, studierte Mikrosystemtechnik an der Albert-Ludwigs Universität in Freiburg im Breisgau. Während seines Masterstudiums konzentrierte er sich auf die Bereiche Sensorik und Lab-on-a-Chip. Seit dem Juni 2015 forscht er in der Arbeitsgruppe für Bioanalytik im Bereich Einzelzellanalytik ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.