q&more
Meine Merkliste
my.chemie.de  
Login  

News

Immunsystem von Pflanzen erkennt Bakterien an kleinen Fettsäuremolekülen

A. Eckert / TUM

Blätter der Ackerschmalwand (arabidopsis thaliana) werden infiziert, indem eine Bakterien enthaltende Lösung aufgepresst wird.

16.04.2019: Nicht nur Menschen und Tiere, auch Pflanzen wehren sich mit Hilfe ihres Immunsystems gegen Krankheitserreger. Doch wodurch wird die zelluläre Abwehr aktiviert? Forscher an der Technischen Universität München (TUM) haben jetzt herausgefunden, dass Rezeptoren in Pflanzenzellen Bakterien an Hand einfacher molekularer Bausteine identifizieren.

„Das Immunsystem der Pflanzen ist raffinierter, als wir gedacht haben“, sagt Dr. Stefanie Ranf vom Lehrstuhl für Phytopathologie der TU München. Zusammen mit einem internationalen Forschungsteam hat die Biochemikerin Substanzen entdeckt, die die pflanzliche Abwehr aktivieren.

Bisher war die Wissenschaft davon ausgegangen, dass die Zellen von Pflanzen – ähnlich wie die von Menschen und Tieren – Bakterien an komplexen molekularen Verbindungen, beispielsweise aus der Bakterienzellwand erkennen. Vor allem bestimmte Moleküle mit einem fettähnlichen Teil und mehreren Zucker-Bausteinen, die sogenannten Lipopolysaccharide, kurz LPS, standen im Verdacht, eine Immunantwort auszulösen.

2015 war es Ranfs Team gelungen, das entsprechende Rezeptor-Protein aufzuspüren: das LipoOligosaccharide-specific Reduced Elicitation, kurz LORE. Alle Experimente deuteten darauf hin, dass dieses LORE-Protein das Immunsystem der Pflanzenzelle aktiviert, wenn es LPS-Moleküle aus der Zellwand bestimmter Bakterien erkennt.

Ein Misserfolg führt auf die richtige Fährte

„Die Überraschung kam, als wir dieses Rezeptor-Protein genauer untersuchen wollten“, erinnert sich Ranf. „Unser Ziel war es herauszufinden, wie LORE verschiedene LPS-Moleküle unterscheidet. Dazu benötigten wir hochreines LPS.“

Bei der Analyse stellten die Forschenden fest, dass nur LPS-Proben mit bestimmten kurzen Fettsäurebestandteilen die Pflanzenabwehr auslösten. Überraschenderweise fanden sie in all diesen aktiven LPS-Proben auch freie Fettsäuremoleküle, die extrem stark haften. Erst nach monatelangem Experimentieren gelang es dem Team, diese freie Fettsäuren vom LPS abzutrennen.

„Als es uns dann endlich gelungen war, hochreines LPS herzustellen, zeigte sich, dass die Pflanzenzelle darauf überhaupt nicht reagiert. Damit war klar, dass die Immunantwort nicht durch das LPS selbst ausgelöst wird, sondern durch den Kontakt mit den daran haftenden 3-Hydroxyfettsäuremolekülen“, so Ranf.

Bakterien-Bausteine im Visier

Die 3-Hydroxyfettsäuren sind im Vergleich zu den großen LPS sehr einfache chemische Bausteine. Sie werden von Bakterien in großen Mengen hergestellt und in unterschiedlichste Komponenten eingebaut. Die Fettsäure-Bausteine sind für die Bakterien unverzichtbar.

„Die Strategie der Pflanzenzellen, Bakterien an Hand dieser Grundbausteine zu identifizieren, ist äußerst raffiniert, denn die Bakterien brauchen die 3-Hydroxyfettsäuren und können somit die Immunantwort nicht umgehen“, resümiert Ranf.

Fitnessprogramm für Pflanzen

Die Forschungsergebnisse könnten künftig helfen, Pflanzen mit verbesserter Immunreaktion zu züchten oder gentechnisch herzustellen. Denkbar ist auch, dass man Pflanzen gezielt mit 3-Hydroxyfettsäuren behandelt, um ihre Abwehrkräfte gegen Krankheitserreger zu verbessern.

Originalveröffentlichung:
"Bacterial medium chain 3-hydroxy fatty acid metabolites trigger immunity in Arabidopsis plants" Alexander Kutschera, Corinna Dawid, Nicolas Gisch, Christian Schmid, Lars Raasch, Tim Gerster, Milena Schäffer, Elwira Smakowska-Luzan, Youssef Belkhadir, A. Corina Vlot, Courtney E. Chandler, Romain Schellenberger, Dominik Schwudke, Robert K. Ernst, Stéphan Dorey, Ralph Hückelhoven, Thomas Hofmann, Stefanie Ranf; Science; April 12, 2019

Fakten, Hintergründe, Dossiers

  • Pflanzen
  • Immunsystems
  • Bakterien

Mehr über TU München

  • News

    Effizienter Katalysator zur Wasserspaltung

    Ein Forschungsteam der Technischen Universität München (TUM) hat im Rahmen einer internationalen Kooperation einen effizienten Wasserspaltungskatalysator entwickelt. Er besteht aus einer Doppelhelix-Halbleiterstruktur, umhüllt mit Kohlenstoffnitrid. Dieser Katalysator ist ideal um billig un ... mehr

    Schwarze Nanopartikel bremsen Tumorwachstum

    Der dunkle Hautfarbstoff Melanin schützt uns vor schädlichen Sonnenstrahlen, indem er Lichtenergie aufnimmt und in Wärme umwandelt. Diese Fähigkeit lässt sich sehr effektiv für die Tumordiagnose und -therapie einsetzen. Das zeigte ein Team der Technischen Universität München (TUM) und des H ... mehr

    Markierung von Proteinen mit Ubiquitin ermöglicht neue Forschung zur Zellregulation

    Menschliche Zelle verfügen über ein raffiniertes Regulierungssystem: die Markierung von Eiweißen mit dem kleinen Proteinmolekül Ubiquitin. Einem Team der Technischen Universität München (TUM) ist es jetzt erstmals gelungen, Proteine sowohl im Reagenzglas als auch in lebenden Zellen gezielt ... mehr

  • q&more Artikel

    Ernährung, Darmflora und Lipidstoffwechsel in der Leber

    Die Natur bringt eine enorme Vielfalt an Lipidmolekülen hervor, die über unterschiedliche Stoffwechselwege synthetisiert werden. Die Fettsäuren sind Bausteine verschiedener Lipide, einschließlich Zellmembranlipiden wie die Phospholipide und Triacylglyceride, die auch die Hauptkomponenten de ... mehr

    Translation

    Die Struktur der chemischen und pharmazeutischen Großindustrie hat sich gewandelt. Traditionelle Zentralforschungsabteilungen, in denen grundlagennahe Wissenschaft ­betrieben wurde, sind ökonomischen Renditebetrachtungen zum Opfer gefallen. mehr

    Molekülgenaue ­Detektivarbeit

    Die drei Ausdrücke im Titel ebenso wie „Known Unknowns“ und „Unknown Unknowns“ sind eingedeutschte Schlagwörter, die derzeit die analytische Wasserszene durcheinanderwirbeln. Die Vorgehensweise in der Nutzung eben dieser Technologien ist jedoch häufig noch nicht ­einheitlich. mehr

  • Autoren

    Dr. Josef Ecker

    Josef Ecker, Jahrgang 1978, studierte Biologie an der Universität in Regensburg. Er promovierte 2007 und forschte danach als Postdoc am Uniklinikum in Regensburg am Institut für Klinische Chemie. Nach einer anschließenden mehrjährigen Tätigkeit in der Industrie im Bereich der Geschäftsführu ... mehr

    Prof. Dr. Arne Skerra

    Arne Skerra, Jg. 1961, studierte Chemie an der TU Darmstadt und wurde 1989 zum Dr. rer. nat. am GenZentrum der LMU München promoviert. Nach Stationen am MRC Laboratory of Molecular Biology in Cambridge, Großbritannien und am Max-Planck-Institut für Bio­physik in Frankfurt/M. wurde er 2004 P ... mehr

    Dr. Thomas Letzel

    Thomas Letzel, geb. 1970, studierte Chemie (1992–1998) an der TU München sowie der LMU München und promovierte 2001 mit einem umweltanalytischen Thema an der TU München und absolvierte im Anschluss einen zweijährigen Postdoc-Aufenthalt an der Vrijen Universiteit Amsterdam. 2009 habilitierte ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.