q&more
Meine Merkliste
my.chemie.de  
Login  

News

Licht aus neuartigen Teilchenzuständen

Copyright: TU Wien

Ein System aus atomar dünnen Materialschichten erzeugt Licht, wenn man es mit passenden Spannungspulsen versorgt.

16.04.2019: Eine neue Art von Leuchtdiode wurde an der TU Wien entwickelt: In dünnen Schichten aus nur wenigen Atomlagen kann man mit Hilfe exotischer „Exzitonencluster“ Licht erzeugen.

Wenn Teilchen eine Bindung eingehen, entstehen normalerweise Atome oder Moleküle – zumindest wenn das im freien Raum passiert. Im Inneren eines Festkörpers lassen sich noch viel exotischere Bindungszustände herstellen.

Diesen Umstand konnte man nun an der TU Wien nutzbar machen: In extrem dünnen Materialschichten aus Wolfram und Selen oder Schwefel wurden durch das Anlegen elektrischer Pulse sogenannte „Exzitonencluster“ erzeugt. Dabei handelt es sich um exotische Bindungszustände aus Elektronen und „Löchern“ im Material. Diese Exzitonencluster können anschließend in Licht umgewandelt werden. So entsteht eine neuartige Form von Leuchtdiode, bei denen man die Wellenlänge des gewünschten Lichts sehr präzise steuern kann.

Elektronen und Löcher

In einem Halbleitermaterial kann elektrische Ladung auf zwei unterschiedliche Arten transportiert werden: Einerseits können Elektronen von Atom zu Atom quer durch das Material wandern – sie tragen negative Ladung mit sich. Andererseits kann es auch passieren, dass irgendwo ein Elektron fehlt – dann ist diese Stelle positiv geladen und man spricht man von einem „Loch“. Wenn ein Elektron aus einem Nachbaratom nachrückt und das Loch füllt, hinterlässt es an seinem ehemaligen Platz gleich wieder ein Loch. So können Löcher ähnlich wie Elektronen durch das Material wandern, allerdings in umgekehrter Richtung.

„Unter bestimmten Umständen können sich Löcher und Elektronen aneinander binden“, sagt Prof. Thomas Müller vom Institut für Photonik (Fakultät für Elektrotechnik und Informationstechnik) an der TU Wien. „Ähnlich wie in einem Wasserstoffatom ein Elektron um den positiv geladenen Atomkern kreist, kann im Festkörper ein Elektron um das positiv geladene Loch kreisen.“

Sogar kompliziertere Bindungszustände sind möglich – sogenannte Trionen, Biexzitonen oder Quintonen, an denen drei bis fünf Bindungspartner beteiligt sind. „Das Biexziton ist beispielsweise das Exziton-Äquivalent zum Wasserstoffmolekül H2“, erklärt Thomas Müller.

Zweidimensionale Schichten

In den meisten Materialien sind solche Bindungszustände höchstens bei extrem tiefen Temperaturen knapp am absoluten Nullpunkt möglich. Doch in sogenannten „zweidimensionalen Materialien“, die nur aus atomar dünnen Schichten bestehen, sieht die Sache anders aus. Das Team der TU Wien, an dem auch Matthias Paur und Aday Molina-Mendoza beteiligt waren, erzeugte eine ausgeklügelte Sandwich-Struktur, in der eine dünne Schicht aus Wolframdiselenid oder Wolframdisulfid zwischen zwei Bornitrid-Schichten eingesperrt wird. Mit Hilfe von Elektroden aus Graphen kann an dieses ultradünne Schichtsystem eine elektrische Spannung angelegt werden.

„In so einem Schichtsystem haben die Exzitonen eine viel höhere Bindundungsenergie als in herkömmlichen Festkörpern und sind daher deutlich stabiler. Sogar bei Zimmertemperatur lassen sich noch einfache Bindungszustände aus Elektronen und Löchern nachweisen. Bei tiefen Temperaturen kann man große, komplizierte Exzitonencluster messen“, berichtet Thomas Müller. Je nachdem, wie man das System mit Hilfe kurzer Spannungspulse mit elektrischer Energie versorgt, kann man unterschiedliche Exzitonencluster erzeugen. Wenn diese Cluster dann wieder zerfallen, setzen sie Energie in Form von Licht frei, dadurch funktioniert das ausgeklügelte Schichtsystem als Leuchtdiode.

„Unser leuchtendes Schichtsystem ist nicht nur eine großartige Möglichkeit, Exzitonen zu studieren, sondern auch eine neuartige Lichtquelle“, sagt Matthias Paur, Erstauthor der Studie. „Wir haben damit nun eine Leuchtdiode, deren Wellenlänge man gezielt beeinflussen kann – und zwar auf sehr simple Weise, einfach durch die Form des angelegten elektrischen Pulses.“

Originalveröffentlichung:
Paur et al.; "Electroluminescence from multi-particle exciton complexes in transition metal dichalcogenide semiconductors"; Nature Communications; 2019

Fakten, Hintergründe, Dossiers

  • Wolframdiselenid
  • Wolframdisulfid
  • Bornitrid

Mehr über TU Wien

  • News

    Wie man Wärmeleitung einfriert

    An der TU Wien wurde ein physikalischer Effekt entdeckt, der elektrisch leitende Materialien mit extrem niedriger Wärmeleitfähigkeit ermöglicht. Damit kann man Abwärme in Strom umwandeln. Jeden Tag geht uns wertvolle Energie in Form von Abwärme verloren – bei technischen Geräten zu Hause, a ... mehr

    Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

    Von „Frequenzkämmen“ spricht man bei speziellem Laserlicht, das sich optimal für chemische Sensoren eignet. Eine revolutionäre Technik der TU Wien erzeugt dieses Licht nun viel einfacher und robuster als bisher. Ein gewöhnlicher Laser hat genau eine Farbe. Alle Photonen, die er abstrahlt, h ... mehr

    Durchsichtige Fliegen: Ein wichtiger Fortschritt in der Mikroskopie

    An der TU Wien wurden ganze Fliegen transparent gemacht, sodass einzelne Nervenzellen direkt im Tier untersucht werden können. Wenn man das Nervensystem eines Tieres untersuchen will, kann man es Schicht für Schicht aufschneiden – doch dadurch zerstört man unweigerlich zelluläre Strukturen ... mehr

  • q&more Artikel

    Das Herz in der Petrischale

    Regenerative Medizin stellt eine der großen Zukunftshoffnungen und Entwicklungsperspektiven in der medizinischen Forschung des 21. Jahrhunderts dar. Revolu­tionäre Resultate konnten bereits durch gentechnische Eingriffe erzielt werden, ­wobei allerdings ethische und regulatorische Aspekte e ... mehr

  • Autoren

    Dr. Kurt Brunner

    Kurt Brunner, geb. 1973, studierte Technische Chemie an der TU Wien, wo er 2003 am Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften promovierte. Während seiner Dissertation arbeitete er im Bereich der Molekularbiologie der Pilze mit Forschungsaufenthalten an de ... mehr

    Prof. Dr. Marko D. Mihovilovic

    Marko D. Mihovilovic, Jg. 1970, studierte von 1988–1993 technische Chemie an der TU Wien und promovierte dort 1996 im Bereich Organische Synthesechemie. Anschließend war er für Postdoc-Aufenthalte als Erwin-Schrödinger-Stipendiat an der University of New Brunswick, Kanada sowie an der Unive ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.