q&more
Meine Merkliste
my.chemie.de  
Login  

News

Fullerene überbrücken Leitungslücke in organischer Photovoltaik

Zwischenschicht aus einem ionischen fullerenhaltigen Polymer erhöht den Wirkungsgrad von organischen Solarzellen

© Wiley-VCH

29.03.2019: In der organischen Photovoltaik werden mittlerweile bemerkenswert hohe Wirkungsgrade erzielt. Allerdings müssen noch besser kombinierbare Materialien für den Zellaufbau gefunden werden, um Preis und Aufwand möglichst gering zu halten. Mit einer Zwischenschicht aus einem ionischen Polymer mit eingearbeiteten Fulleren-Einheiten haben Forscher aus den USA und China jetzt in einem einfachen Schritt sowohl die Stabilität als auch den Wirkungsgrad von organischen Standard-Solarzellen erhöhen können. Warum eine solche Zwischenschicht die Leistung verbessert, beschreiben die Autoren in der Zeitschrift Angewandte Chemie.

Die organische Photovoltaik (OPV) verwendet organische Moleküle, um aus Sonnenlicht Strom zu erzeugen. Gegenüber den gängigen Silizium-Solarzellen haben solche organischen Zellen viele Vorteile: die Module sind leicht, sogar biegsam, und können prinzipiell aus billigen Ausgangsstoffen variantenreich hergestellt werden. Um dann jedoch an die Langlebigkeit und die Qualität der Silizium-Zellen heranzukommen, müssen noch bessere Materialkombinationen für die aktive Schicht und die Elektroden gefunden werden. Bislang sind solche leistungsstarken Architekturen noch sehr aufwändig und teuer.

Luftstabile Kathoden, die sich sehr einfach auftragen lassen, bestehen aus Silber oder Gold. Diese Metalle haben aber eine hohe Austrittsarbeit, die sich auf das Zellpotential und somit die Leistung auswirkt. Yao Lui von der Beijing University of Chemical Technology (China) sowie Thomas Russell und Todd Emrick von der University of Massachusetts in Amherst (USA) und ihre Teams haben jetzt eine Zwischenschicht aus einem neuartigen Polymer entwickelt, das leitfähig ist und durch den Dipolcharakter die Austrittsarbeit reduziert.

Als Material für die Zwischenschicht untersuchten die Forscher ein neuartiges Polymerdesign von ionischen Polymeren: „Diese ionischen Polymere sind Polykationen, bei denen sich die geladenen Einheiten innerhalb des Polymerrückgrats befinden, also nicht Seitengruppen sind”, erlätern die Autoren. Bei diesem Design verteilt sich die Ladung über die Polymerlänge noch besser als in normalen kationischen Polymeren, und durch das Polymerdesign lässt sich die Ladung und damit der Dipolcharakter gezielt anpassen. Allerdings ist das Polymer allein nicht besonders leitfähig, eine Grundvorraussetzung für eine Zwischenschicht in elektronischen Bauelementen.

Also musste die Leitfähigkeit zusätzlich erhöht werden, und zwar durch den Einbau von Fulleren in die Polymerstruktur. Fullerene, die berühmten „Fußballmoleküle”, bestehen aus einem Kugelgerüst allein aus Kohlenstoffatomen. Sie werden in organischen Photomodulen schon häufig als gute Elektronenakzeptoren eingebaut. Geschätzt werden sie unter anderem wegen ihrer Leitfähigkeit.

Das Fulleren-Ionenpolymer entwickelten die Wissenschaftler durch ein Stufenwachstumsverfahren unter Verwendung von neuartigen funktionalen Monomeren. Dann bauten sie es als Zwischenschicht in eine organische Photozelle ein, deren Wirkungsgrad sich um beeindruckende 300 Prozent steigerte und zweistellige Werte von über 10% erreichte. Ein solcher Wirkungsgrad liegt im üblichen Anwendungsbereich von Photozellen. Eine relativ einfache Materialinnovationen kann also den Wirkungsgrad verbessern. Die Autoren betonen, dass hier insbesondere die Unverträglichkeit zwischen (harter) Elektrode und (weicher) aktiven Schicht überbrückt wurde.

Originalveröffentlichung:
Thomas P. Russell et al.; "Transforming Ionene Polymers into Efficient Cathode Interlayers with Pendent Fullerenes"; Angewandte Chemie International Edition; 2019

Fakten, Hintergründe, Dossiers

Mehr über University of Massachusetts

  • News

    Rasche, einfache Beschichtung macht Oberflächen omniphob

    Oberflächen, auf denen weder Schmutz noch Graffiti haften, die leicht zu reinigen sind und von denen Flüssigkeiten einfach abperlen, wie bei der viel zitierten Lotus-Blume, stehen weit oben auf der Wunschliste von Technik und Wissenschaft. Durchschlagenden Erfolg hatte noch keine der bisher ... mehr

Mehr über Angewandte Chemie

  • News

    Sichtbare Fresszellen

    Bestimmte Aufgaben des Immunsystems im Gehirn werden von Zellen des Typs Mikroglia erfüllt. Mit einer eigens entwickelten Fluoreszenzsonde können Forscher aus Korea und Singapur diese Art von Fresszellen nun direkt markieren und durch Bildgebung sichtbar machen. Dies gelang in Zellkultur un ... mehr

    Elektrochemische Energie aus Meerwasser

    Unterwasserfahrzeuge, Tauchroboter oder Detektoren benötigen eine eigene Energieversorgung, wenn sie über längere Zeit unabhängig von Begleitschiffen unter Wasser betrieben werden sollen. Praktikabler als Akkus ist eine direkte elektrochemische Energiegewinnung aus Meerwasser. Ein neuer kos ... mehr

    Kleines in Zellen beobachten

    Zellen reagieren auf Störungen häufig mit einem veränderten Stoffwechsel. Die Veränderung in den Metaboliten direkt zu beobachten ist schwierig. Britische Wissenschaftler haben nun in einer internationalen Kooperation neue, kleine Fluorophore namens SCOTfluors entwickelt. Die Fluoreszenzfar ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.