q&more
Meine Merkliste
my.chemie.de  
Login  

News

Ein soziales Bakterium, das sich vielseitig verhält

ETH Zürich / Gregory J. Velicer

Bei knapper Nahrung schliessen sich Individuen des sozialen Bodenbakteriums M. xanthus zusammen und bilden gelbe Fruchtkörper aus.

25.03.2019: Verwandte Individuen eines Bodenbakteriums, die sich zu kooperativen Verbänden zusammentun, sind genetisch erstaunlich divers und zeigen vielfältige Verhaltensweisen.

Eine grundlegende Eigenschaft lebender Systeme ist die Fähigkeit zur Zusammenarbeit. So bestehen Pflanzen und Tiere aus Milliarden von Zellen, die miteinander kommunizieren, spezifische Aufgaben erledigen und sich Ressourcen teilen. Auch viele einzellige Mikroorganismen kooperieren auf vielfältige Weise, indem sie Gemeinschaften bilden und nützliche Gene oder Güter untereinander austauschen.

Besonders kooperativ ist die Mikrobe Myxococcus xanthus. Sie kommt fast überall auf der Welt in Böden vor und dient Wissenschaftlern als Modellorganismus für mikrobielle Entwicklung und Kooperation. Bei diesem räuberischen Bakterium schliessen sich die Zellen zu kooperativen Verbänden zusammen, die gemeinsam ausschwärmen und andere Mikroorganismen im Boden jagen. Um sich als Gruppe fortzubewegen, sondern sie Gleitstoffe ab und ziehen sich mit speziellen Fortsätzen durch das umgebende Substrat. Wird die Nahrung knapp, ballen sich tausende dieser Bakterien zu einem Fruchtkörper zusammen und bilden Dauersporen aus. So können sie Hunger und Trockenheit trotzen.

Nah verwandt – und doch verschieden

Bislang ging man davon aus, dass Kooperation vor allem zwischen genetisch nah verwandten Zellen gut gelingt, die sich ähnlich verhalten. Denn unterscheiden sich Individuen genetisch zu stark, sollten sie sich gegenseitig meiden, behindern oder gar bekämpfen. «Über die genetische Zusammensetzung kooperierender Gruppen dieser sozialen Bakterien in der Natur wusste man bis anhin sehr wenig», sagt Sébastien Wielgoss, Oberassistent in der Gruppe von Professor Gregory Velicer am Institut für integrative Biologie der ETH Zürich.

Gemeinsam mit Kollegen haben Wielgoss und Velicer nun die genetischen Verwandtschaftsbeziehungen von M. xanthus-Fruchtkörpergruppen aus dem Boden näher untersucht. Dazu verwendeten sie eine der grössten Sammlungen an M. xanthus-Stämmen weltweit, die Velicer in seinem Labor in Gefrierschränken hält.

In einer soeben im Fachmagazin Science veröffentlichten Studie zeigen die Forscher anhand genetischer Analysen, dass kooperierende Gruppen des Bodenbakteriums M. xanthus tatsächlich aus nahverwandten Zellen bestehen, die sich jedoch genetisch und in ihrem sozialen Verhalten unerwartet deutlich unterscheiden. Die kooperativen Zellverbände bleiben dabei oft über hunderte von Generationen bestehen.

Selektion an sozialen Genen

In ihrer Studie untersuchte das Forscherteam Zellverbände, die von einem gemeinsamen Vorfahren abstammten. In diesen nahverwandten Gruppen entstanden durch Mutation verschiedene sozial unterschiedliche Zelllinien, die beispielsweise schneller oder langsamer schwärmen, oder mehr oder weniger Sporen im Fruchtkörper ausbilden.

Eine hohe Verhaltensvielfalt kann auch eine Gefahr für die Gemeinschaft darstellen. Zum Beispiel wenn sich einzelne Bakterien im Verband «betrügerisch» verhalten und wenig beitragen, sich aber dennoch vom Rest der Gruppe aushalten lassen. «Wir haben jedoch keine solchen betrügerischen Verhaltensweisen beobachtet», hält Wielgoss fest. Die meisten Gruppen seien sowohl genetisch als auch sozial hochdivers und funktionierten dennoch gut miteinander.

Die hohe Vielfalt an Verhaltensweisen führen die Forscher auf eine Form evolutionärer Selektion zurück, die sich auf wenige «soziale» Gene konzentriert, die das Sozialverhalten der Bakterien steuern. Durch natürliche Mutationen in diesen «Selektions-Hotspots» häufen sich Verhaltensänderungen an – es entsteht eine durchmischte Gemeinschaft von Zellen mit variierender Sporenproduktion und unterschiedlichen Schwärmgeschwindigkeiten. Die Wissenschaftler gehen davon aus, dass sich die diversifizierten Zellen auch in ihrem kooperativen Jagdverhalten unterscheiden, speziell untersucht haben sie das in dieser Studie aber nicht.

«Zellgemeinschaften mit einem hohen Verhaltensrepertoire können sich besser an Umweltveränderungen anpassen und sind daher evolutionär oft erfolgreicher als homogene Gruppen von Zellen, die sich alle gleich verhalten. ‘Kulturelle Vielfalt’ ist bei Bakterien also durchaus ein Erfolgsrezept», erklärt Wielgoss das Phänomen.

Kooperierende Zellen besser verstehen

Mikroorganismen sind omnipräsent und spielen in unserem Alltag eine wichtige Rolle, sei es als Partner in unserer Darmflora, als Krankheitserreger oder in der Lebensmittelproduktion. Viele schliessen sich in der Natur ebenfalls zu kooperativen Zellverbänden zusammen. Laut den Forschenden kann das neu erworbene Wissen um die sozialen Bodenbakterien daher auch helfen, die Zusammenarbeit anderer bakterieller Zellgemeinschaften besser zu verstehen, etwa jene des bedeutenden Pathogens Pseudomonas aeruginosa, das immungeschwächte Patienten infizieren und zu schweren Langzeitinfektionen führen kann.

Originalveröffentlichung:
Wielgoss S, Wolfensberger R, Sun L, Fiegna F, Velicer G J.; "Social genes are selection hotspots in kin groups of a soil microbe"; Science; 22. März 2019.

Fakten, Hintergründe, Dossiers

  • Myxococcus xanthus
  • Bakterien
  • Mikroorganismen
  • genetische Analysen

Mehr über ETH Zürich

  • News

    Wenn sich Sand wie Öl verhält

    Sand, Kaffeepulver oder Reis verhalten sich ganz anders als Wasser und Öl. Doch unter gewissen Bedingungen zeigen sich plötzlich erstaunliche Ähnlichkeiten. Wissenschaftler haben einen Weg gefunden, wie sie das Verhalten von körnigen Materialien besser verstehen können. Körnige Materialien ... mehr

    Flemings Methode im Miniformat

    Forscher am Departement für Biosysteme der ETH Zürich in Basel haben eine Methode entwickelt, mit der sie schnell eine sehr grosse Anzahl an Molekülen auf ihre antibiotische Wirkung testen können. Sie entdeckten damit neue Kandidaten für Antibiotika. In Zukunft möchten sie mit dem Verfahren ... mehr

    Im Labyrinth offenbaren Bakterien ihre Individualität

    Forscher der ETH Zürich weisen nach, dass genetisch identische Zellen individuell unterschiedlich auf chemische Lockstoffe reagieren. Mit Durchschnittswerten lässt sich das Verhalten von Bakterien nur ungenügend beschreiben. Sie gelten als die einfachsten Lebensformen. Doch selbst Mikroorga ... mehr

  • q&more Artikel

    Analytik in Picoliter-Volumina

    Zeit, Kosten und personellen Aufwand senken – viele grundlegende sowie angewandte analytische und diagnostische Herausforderungen können mit Lab-on-a-Chip-Systemen realisiert werden. Sie erlauben die Verringerung von Probenmengen, die Automatisierung und Parallelisierung von Arbeitsschritte ... mehr

    Investition für die Zukunft

    Dies ist das ganz besondere Anliegen und gleichzeitig der Anspruch von Frau Dr. Irmgard Werner, die als Dozentin an der ETH Zürich jährlich rund 65 Pharmaziestudenten im 5. Semester im Praktikum „pharmazeutische Analytik“ betreut. Mit Freude und Begeisterung für ihr Fach stellt sie sich imm ... mehr

  • Autoren

    Prof. Dr. Petra S. Dittrich

    Jg. 1974, ist Außerordentliche Professorin am Department Biosysteme der ETH Zürich. Sie studierte Chemie an der Universität Bielefeld und Universidad de Salamanca (Spanien). Nach der Promotion am Max-Planck-Institut für biophysikalische Chemie in Göttingen war sie Postdoktorandin am ISAS In ... mehr

    Dr. Felix Kurth

    Jg. 1982, studierte Bioingenieurwesen an der Technischen Universität Dortmund und an der Königlich Technischen Hochschule in Stockholm. Für seine Promotion, die er 2015 von der Eidgenössisch Technischen Hochschule in Zürich erlangte, entwickelte er Lab-on-a-Chip Systeme und Methoden zur Qua ... mehr

    Lucas Armbrecht

    Jg. 1989, studierte Mikrosystemtechnik an der Albert-Ludwigs Universität in Freiburg im Breisgau. Während seines Masterstudiums konzentrierte er sich auf die Bereiche Sensorik und Lab-on-a-Chip. Seit dem Juni 2015 forscht er in der Arbeitsgruppe für Bioanalytik im Bereich Einzelzellanalytik ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.