q&more
Meine Merkliste
my.chemie.de  
Login  

News

Ein Transistor für alle Fälle

Organische Halbleiter

Christoph Hohmann, Nanosystems Initiative Munich (NIM)

22.03.2019: Ob Handy, Kühlschrank oder Flugzeug: Transistoren sind überall verbaut. LMU-Physiker haben jetzt einen nanoskopisch kleinen Transistor aus organischem Halbleitermaterial entwickelt, der sowohl bei niedrigem als auch hohem Strom bestens funktioniert.

Transistoren sind Halbleiter-Bauelemente, die in elektrischen Schaltungen Spannungen und Ströme steuern. Im gleichen Maße wie viele elektrische Geräte immer leistungsfähiger und gleichzeitig kleiner werden, gilt dies auch für Transistoren. Bei anorganischen Bauelementen sind Abmessungen unter 100 Nanometer bereits Standard.

Organische Halbleiter können hier noch nicht mithalten, denn ihre Leistung bezüglich des Ladungstransports ist deutlich geringer. Doch ihre Strukturen bieten andere Vorteile. Sie lassen sich großindustriell drucken, die Materialkosten sind niedrig und sie können transparent auf flexible Oberflächen wie Folien aufgebracht werden. Daher arbeiten Thomas Weitz, Professor für Physik an der LMU und Mitglied in der Nanosystems Initiative Munich, und seine Gruppe an der Optimierung der organischen Transistoren. In ihrer aktuellen Publikation in Nature Nanotechnology präsentieren sie Transistoren, die durch ihren ungewöhnlichen Aufbau sehr klein, leistungsstark und anpassungsfähig sind. Über wenige Parameter lässt sich beispielsweise bei der Herstellung steuern, ob der Halbleiter für hohe oder niedrige Stromdichten optimiert sein soll. Das Besondere ist eine untypische Geometrie, die es zudem erlaubt, die nanoskopisch kleinen Transistoren leichter herzustellen.

„Unser Ziel war es, Bauteile zu entwickeln, die zwei Aufgaben kombinieren“, sagt Thomas Weitz „Einerseits die Fähigkeit, bei hohen Strömen als klassische Transistoren zu fungieren, und andererseits bei Niedrigstrom arbeiten zu können.“ Potenzielle Einsatzgebiete sind organische LEDs oder Sensoren, denn hier werden niedrige Spannungen, hohe Ströme oder große Transkonduktanzen benötigt. Besonders interessant könnte die Verwendung in sogenannten memristiven Elementen sein. „Man kann sich einen Memristor als ein Element vorstellen, das sich beim Verarbeiten elektrischer Signale wie ein Netzwerk von Neuronen verhält und seine Eigenschaften abhängig von dem Zustand, in dem es sich befindet, verändert“, erklärt Weitz. „Durch das genaue Anpassen der Geometrie unserer memristiven Elemente können diese für verschiedene Anwendungen wie beispielsweise Lernprozesse in künstlichen Synapsen eingesetzt werden.“

Die Forscher haben ihren Transistor bereits zum Patent angemeldet, damit er für die industrielle Anwendung weiterentwickelt werden kann.

Originalveröffentlichung:
Lenz, del Giudice, Geisenhof, Winterer, Weitz; "Vertical, electrolyte-gated organic transistors show continuous operation in the MA/cm2 regime and artificial synaptic behavior"; Nature Nanotechnology; 2019

Fakten, Hintergründe, Dossiers

  • Transistoren
  • organische Halbleiter

Mehr über LMU

  • News

    Blinzelcode für Moleküle

    Der LMU-Physiker Ralf Jungmann hat superauflösende Fluoreszenzmikroskopieverfahren entscheidend vorangebracht: Mit neuen Sonden kann er zahlreiche verschiedene Moleküle gleichzeitig detektieren – jedes blinkt auf charakteristische Weise. Blinksignale für die Nanowelt: Ralf Jungmann, Profess ... mehr

    Katalysatoren: Fluktuationen machen den Weg frei

    LMU-Chemiker haben einen Mechanismus identifiziert, mit dessen Hilfe sich Moleküle schnell über eine voll besetzte Katalysatoroberfläche bewegen können – besonders unter industriellen Bedingungen ein wichtiger Prozess. Katalysatoren machen viele technische Verfahren überhaupt erst möglich. ... mehr

    Defekte Immunzellen im Gehirn verursachen Alzheimer

    Mutationen des Gens TREM2 können das Risiko, an Alzheimer zu erkranken, erheblich erhöhen. In einer aktuellen Studie beleuchten Wissenschaftler des DZNE und der Ludwig-Maximilians-Universität München, warum TREM2 für die Gesundheit des Gehirns so wichtig ist. Sie zeigen, dass TREM2 Immunzel ... mehr

  • q&more Artikel

    Code erkannt

    Der genetische Code codiert alle Informationen, die in jeder Zelle für die ­korrekte Funktion und Interaktion der Zelle mit der Umgebung notwendig sind. Aufgebaut wird er aus vier unterschiedlichen Molekülen, den so genannten ­kanonischen Watson-Crick-Basen Adenin, Cytosin, Guanin und Thymi ... mehr

  • Autoren

    Prof. Dr. Thomas Carell

    Thomas Carell, Jg. 1966, studierte Chemie und fertigte seine Doktorarbeit am Max-Planck Institut für Medizinische Forschung unter der Anleitung von Prof. Dr. Dr. H. A. Staab an. Nach einem Forschungs-aufenthalt in den USA ging er an die ETH Zürich in das Laboratorium für Organische Chemie u ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.