19.03.2019 - Universität Bayreuth

Neues Verfahren zur Klonierung

Hocheffizient und kostengünstig

Die DNA, welche die Erbinformationen eines Organismus enthält, besteht aus einer langen Reihe von Nukleotiden. Um die in der Abfolge dieser Bausteine begründeten Funktionen untersuchen zu können, müssen DNA-Fragmente in Trägermoleküle eingesetzt und vervielfältigt werden. Für diesen Vorgang der Klonierung hat ein Forschungsteam der Universität Bayreuth ein hocheffizientes, schnelles und kostengünstiges Verfahren entwickelt, das auf allen Gebieten der Biologie, Biochemie und Biotechnologie sehr flexibel einsetzbar ist. Dabei entfällt das aufwändige Screening von Bakterienkolonien.

Allen Verfahren, die derzeit zur Klonierung eingesetzt werden, ist gemeinsam, dass DNA-Fragmente zunächst in größere Trägermoleküle, sogenannte Vektoren, eingebaut werden. Die mit DNA-Fragmenten beladenen Vektoren werden anschließend in Bakterien eingeschleust. Indem sich die Bakterien vermehren und so eine Bakterienkolonie bilden, werden die DNA-Fragmente tausendfach vervielfältigt. Bisher haben diese Verfahren einen wesentlichen Nachteil: Weil der Einbau von DNA-Fragmenten in das Trägermolekül nicht immer störungsfrei und mit der nötigen Perfektion gelingt, besitzen keineswegs alle, sondern nur einige Kolonien die Vektoren mit den zu vervielfältigenden DNA-Fragmenten. Um diese „Erfolgsfälle“ zu identifizieren, war bisher ein zeitaufwändiges und teures Screening unvermeidlich.

Den Bayreuther Forschern unter der Leitung von Prof. Dr. Stefan Schuster ist es jetzt gelungen, dieses Screening überflüssig zu machen. Bei dem von ihnen verwendeten Vektor handelt es sich um ein Plasmid, das in seiner Ringstruktur ein toxisches Gen enthält. DNA-Fragmente werden nun so in das Plasmid eingebaut, dass sie dieses Gen ersetzen. Gelingt das nicht, bleibt das toxische Potenzial im Plasmid erhalten. Wird in einem solchen Fall das Plasmid in ein E. coli-Bakterium eingeschleust, setzt die toxische Wirkung ein: Sie führt dazu, dass das Bakterium vermehrungsunfähig wird und nicht lange überlebt. Dadurch ist von vornherein gewährleistet, dass nur solche E. coli-Bakterien Kolonien bilden, in denen die DNA-Fragmente tatsächlich enthalten sind. Sie müssen nicht nachträglich mühevoll ausgelesen werden. „Unser neues Klonierungssystem ist vor allem deshalb so effizient, weil die Auslese der mit klonierten DNA-Fragmenten ausgestatteten Bakterien zuverlässig von selbst erfolgt. Die vervielfältigten Plasmide können aus diesen Bakterien isoliert und weiterverwendet werden – sei es, um die klonierte DNA zu analysieren oder um sie für die biotechnologische Herstellung von Proteinen einzusetzen“, sagt der Bayreuther Biologe Dr. David Richter, Erstautor der Studie.

Das in Scientific Reports vorgestellte Verfahren vereinfacht den Vorgang der Klonierung noch in einer weiteren Hinsicht: Die Wissenschaftler haben eine aus den Zellen von E. coli-Bakterien gewonnenen Extrakt (SLiCE) so optimiert, dass er sich hervorragend als „Klebstoff“ eignet, um mehrere DNA-Fragmente wie die Glieder einer Kette aneinanderzureihen und zu verbinden. So können jetzt die verschiedensten Kombinationen von DNA-Fragmenten in das Plasmid eingefügt werden – und zwar deutlich schneller als mit bisherigen Methoden.

Das Bayreuther Forscherteam hat das neue Klonierungssystem auf den Namen „ZeBRα“ getauft. Das Akronym leitet sich von den wissenschaftlichen Bezeichnungen zweier Faktoren ab, die dabei entscheidend sind. Das verwendete Plasmid ist ein „Zero-Background Vector“. Dies bedeutet: Bakterien, die Plasmid-Moleküle ohne die zu vervielfältigenden DNA-Fragmente enthalten, bilden keine störenden Kolonien im Hintergrund. „Redα-Exonuclease“ ist wiederum ein Bestandteil des E. coli-Extracts, mit dem verschiedene DNA-Fragmente aneinandergekettet und in den Vektor eingebaut werden können.

Anknüpfend an die jetzt veröffentlichten Forschungsergebnisse wollen die Wissenschaftler ihr Klonierungsverfahren künftig um weitere Funktionen bereichern und dadurch vielseitiger einsetzbar machen. Insbesondere soll der Vektor so optimiert werden, dass er die Transformation bestimmter Organismen oder Zelllinien erleichtert. Dabei werden DNA-Fragmente direkt in Organismen oder Zellen übertragen. Weil auch diese Übertragung relativ selten zustande kommt, ist es vorteilhaft, wenn der Vektor DNA-Sequenzen mitbringt, die zur Bildung fluoreszierender Proteine führen. Diese Proteine machen dann den erfolgreichen Einbau der DNA-Fragmente sichtbar.

Fakten, Hintergründe, Dossiers

  • DNA-Klonierung
  • Plasmide
  • Escherichia coli
  • Klonierungssysteme

Mehr über Uni Bayreuth

  • News

    Neue Studie zur Optimierung mikrobieller Brennstoffzellen

    Mikrobielle Brennstoffzellen werden heute hauptsächlich in Forschungslaboren für die Erzeugung von elektrischem Strom eingesetzt. Damit künftig auch industrielle Anwendungen in Betracht kommen, müssen die Brennstoffzellen dahin weiterentwickelt werden, dass sie gleichbleibend höhere Stromme ... mehr

    Ein neues Peptidsystem für den zielgenauen Molekültransport in lebende Säugetierzellen

    Ein neuartiges, an den Universitäten Bayreuth und Bristol entwickeltes Peptid eignet sich hervorragend zum zielgenauen Transport von Molekülen, beispielsweise von Wirk- und Farbstoffen, in die Zellen von Säugetieren. Das Peptid zeichnet sich durch eine Doppelfunktion aus: Es kann von außen ... mehr

    Neue spektroskopische Erkenntnisse zu Wasserstoffbrücken

    Wasserstoffbrücken sind von grundlegendem Interesse für die Materialwissenschaft, die Physik und die Chemie. Ein internationales Team mit Wissenschaftler*innen der Universität Bayreuth hat jetzt mit einem neuartigen Verfahren, das die Anwendung der NMR-Spektroskopie in der Hochdruckforschun ... mehr

  • q&more Artikel

    Authentische Lebensmittel

    Authentische Lebensmittel erfreuen sich bei Konsumenten zunehmender Beliebtheit. Ein regionales, sortenreines und/oder speziell hergestelltes Produkt ist in einem stark industrialisierten Markt in steigendem Maß ein Garant für mehr Wertschöpfung. Gerade im Premiumsegment lassen sich durch ö ... mehr

    Mehr als Honig?

    Seit Jahrtausenden ist „Honig“ ein Inbegriff für ein naturbelassenes und gesundes Lebensmittel. Dementsprechend erfreut sich Honig auch bei Konsumenten steter Beliebtheit – gerade in Zeiten, in denen biologische Lebensmittel und eine gesunde Lebensweise aktueller sind als je zuvor. mehr

    Extraportion Zink

    Mächtige Unterarme, Pfeife im Mund, Matrosenhut. In Sekundenschnelle ist die Dose Spinat geöffnet und ­geleert. Mit nun übermenschlicher Kraft geht es in die nächste Rauferei. So kennen wir Popeye, den Seemann. Das Geheimnis seiner Stärke ist der hohe Eisengehalt von Spinat. Mit dieser Vors ... mehr

  • Autoren

    Dr. Christopher Igel

    Jg. 1990, absolvierte von 2009 bis 2013 sein Bachelor-Studium in Biochemie an der Universität Bayreuth. Die Bachelorarbeit zum Thema „Honiganalytik mittels NMR“ fertigte er am Forschungszentrum BIOmac unter der Leitung von Prof. Dr. Schwarzinger an. mehr

    Wolfrat Bachert

    Jg. 1987, begann zunächst ein Studium des Maschinen­baustudium an der TU Dresden, eher er 2009 zum Studium der Biologie an die ­Universität Bayreuth wechselte, wo er 2013 am Lehrstuhl für Biochemie unter der Leitung von Prof. Dr. Wulf Blankenfeldt seine Bachelorarbeit zum Thema „Charakteri­ ... mehr

    Christopher Synatschke

    Christopher Synatschke hat an der Universität Bayreuth und der University of New South Wales, Sydney Chemie mit Schwerpunkt Polymerforschung studiert und ist seit 2009 Doktorand in der Arbeitsgruppe von Prof. Axel H. E. Müller an der Universität Bayreuth. Seine Forschungsinteressen sind die ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: