q&more
Meine Merkliste
my.chemie.de  
Login  

News

Elektrokatalyse: Wasserspalter mit Multi Tasking-Talent

Edelmetall-freier Komposit-Katalaysator spielt Doppelrolle

Uni Ulm

Elektrochemische Katalyse-Apparatur

Schaubild: Institut für Anorganische Chemie I

Schematische Abbildung zu Aufbau und Funktionsweise des Komposit-Katalysators.

18.03.2019: Brennstoffzellen eignen sich hervorragend zur Speicherung von Wind- und Sonnenenergie. Sie sind daher ein bedeutender Baustein der Energiewende. Der dafür benötigte Wasserstoff wird durch die elektrokatalytische Spaltung von Wasser gewonnen, bei der auch Sauerstoff frei wird. Einen großen Schritt zur Optimierung dieser elektrochemischen Schlüsselreaktion ist nun Forschenden der Universität Ulm gelungen. Die Chemiker aus dem Institut für Anorganische Chemie I haben einen Edelmetall-freien Komposit-Katalysator entwickelt, der in derselben chemischen Reaktion sowohl für die Entwicklung von Sauerstoff als auch von Wasserstoff eingesetzt werden kann.

„Die elektrochemische Reaktion bei der Wasserspaltung läuft in zwei chemischen Halbreaktionen ab. Einerseits wird dabei Wasserstoff ausgegast und andererseits Sauerstoff“, erklärt Professor Carsten Streb vom Institut für Anorganische Chemie I an der Universität Ulm. In herkömmlichen elektrochemischen Katalysatorsystemen kommen bei diesen beiden Halbreaktionen unterschiedliche Materialien zum Einsatz. Ulmer Chemiker aus Professor Strebs Labor haben nun in Kooperation mit Materialwissenschaftlern aus China ein Edelmetall-freies Komposit-Material entwickelt, das sich in beiden Teilreaktionen gleichermaßen bewährt hat. Der Vorteil: „Das bi-funktionale Katalysator-Material vereinfacht das Design und die Fertigung von Systemen für die elektrochemische Wasserspaltung. Außerdem können so wechselseitige Verunreinigungen und Materialunverträglichkeiten vermieden werden, die bis zur „Vergiftung“ des Katalysators reichen“, erklärt Dandan Gao.

Mit einer hydrothermalen Reaktion wird das Metall-Oxid auf der Elektrode abgeschieden

Um elektrochemische Wasserspaltungssysteme im industriellen Maßstab realisieren zu können, braucht es Katalysatoren, die ohne Edelmetalle wie Platin oder Iridium auskommen. Trotzdem müssen diese eine hohe Reaktivität aufweisen sowie sehr stabil und langlebig sein. Die Ulmer Chemiker haben nun ein modulares Design für ein solches Edelmetall-freies bi-funktionales Verbundmaterial entwickelt, das diese Voraussetzungen erfüllt. „Wir verwenden dafür sowohl hochreaktives Kobalt-Oxid als auch halbleitendes Kupfer-Oxid, das den Elektronentransport verstärken soll. Dritter im Verbund ist Wolfram-Oxid, das das Katalysator-Material strukturell und chemisch stabilisieren soll, um es langlebiger zu machen“, erklärt Gao. Mit Hilfe einer hydrothermalen Reaktion wird dieses Metall-Oxid-Gemisch auf einer Elektrode aus herkömmlichem makroporösem Kupferschaum abgeschieden. Der Kupferschaum ist elektrisch sehr leitfähig und hat eine große Reaktionsoberfläche. Zugleich sind dessen Mikrostrukturen gut zugänglich für den Elektrolyten und erleichtern damit die Freisetzung der Gase an der Elektrodenoberfläche.
„Die größte Herausforderung bestand darin, die Metall-Oxide mit ihren unterschiedlichen Funktionalitäten auf der Oberfläche der Kupferschaum-Elektrode zu verankern. Und zwar so, dass das synthetisierte Material sowohl chemisch, als auch mechanisch und elektrisch stabil bleibt“, so Projektleiter Streb. Mit dem Ergebnis sind die Wissenschaftler sehr zufrieden.

Die Nanodrähte aus Kupferoxid sind sehr leitfähig

So wurde mit volumetrischen Messungen die katalytische Leistungsfähigkeit untersucht: Mit elektronenmikroskopischen und röntgenspektroskopischen Analysen konnten nicht nur die Materialstrukturen im Nano- und Mikrometerbereich sichtbar gemacht werden, sondern auch die chemische Beschaffenheit, die kristalline Struktur und die räumliche Verteilung der unterschiedlichen Metall-Oxid-Nanostrukturen nachgewiesen werden. In den rasterelektronenmikroskopischen Aufnahmen kann man beispielsweise die Nadelstruktur der sehr leitfähigen Nanodrähte aus Kupferoxid hervorragend erkennen. Beteiligt an dem Projekt waren auch Elektronenmikroskopie-Experten um die Ulmer Professorin Ute Kaiser. Gefördert wurde das Projekt mit Mitteln der Deutschen Forschungsgemeinschaft aus dem Sonderforschungsbereich TRR 234 „CataLight“. Weitere Unterstützer sind die Alexander-von-Humboldt-Stiftung, die Helmholtz-Gemeinschaft und das Chinese Scholarship Council.

Originalveröffentlichung:
Dandan Gao, Rongji Liu, Johannes Biskupek, Ute Kaiser, Yu-Fei Song, Carsten Streb; "Modular design of noble metal-free mixed metal oxide electrocatalysts for complete water splitting"; Angewandte Chemie; first published 07 February 2019

Fakten, Hintergründe, Dossiers

  • Kupferoxid
  • Wolframoxid
  • Metalloxide

Mehr über Uni Ulm

  • News

    Genschalter bei der Arbeit beobachtet

    Ein Lichtschalter hat zwei Zustände, er ist entweder an oder aus. Bei einem Genschalter ist die Sache etwas komplizierter. Wie komplex und dynamisch das Zusammenspiel zwischen DNA und Genregulatoren ist, haben Ulmer Forscher am Beispiel des Transkriptionsfaktors SRF untersucht, und zwar „li ... mehr

    Synthese von Graphen verstanden

    Wissenschaftler der Freien Universität Berlin, der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) und der Universität Ulm haben gemeinsam die nasschemische Synthese von Graphen aus Graphit entscheidend vorangetrieben und dabei den zugrundeliegenden Mechanismus aufgeklärt. Dabei lös ... mehr

    Entschlüsselung der Huntingtin-Struktur

    Mutationen auf einem einzigen Gen, dem Huntingtin-Gen, sind die Ursache der Huntington-Krankheit. Sie führen zu einer fehlerhaften Form des gleichnamigen Proteins. Jetzt haben Forscher vom Max-Planck-Institut für Biochemie in Martinsried und der Universität Ulm mit Hilfe der Kryo-Elektronen ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.