q&more
Meine Merkliste
my.chemie.de  
Login  

News

Elastisch wie Gummi, viskos wie Honig: Immunzellen anhand mechanischer Eigenschaften unterscheiden

© Manuela Janke (Universitätsmedizin Greifswald)

Die Wissenschaftler von der Universität Greifswald und der Universitätsmedizin Greifswald von links nach rechts: Bob Fregin , DZHK-Standortmanager Dr. Stefan Groß , Dr. Oliver Otto und Professor Stephan Felix.

13.03.2019: Unterschiedliche Typen von Immunzellen voneinander zu unterscheiden, ohne sie vorher anzufärben – das ist Wissenschaftlern des Deutschen Zentrums für Herz-Kreislauf-Forschung (DZHK), der Universität Greifswald und der Universitätsmedizin Greifswald sowie der Technischen Universität Dresden gelungen. Sie haben eine Methode weiterentwickelt, mit der man Zellen innerhalb weniger Sekunden in nur einem Tropfen Blut anhand ihrer mechanischen Eigenschaften erkennen kann. Damit können nun erstmals bestimmte Zellen des Immunsystems, die B- und T-Lymphozyten, unterschieden werden, ohne dass sie vorher mit einem fluoreszenzmarkierten Antikörper versehen wurden.

Mechanische Eigenschaften liefern uns auch im Alltag wichtige Informationen, etwa wenn wir testen, wie weich eine Matratze ist oder eine Birne drücken, um herauszufinden, ob sie reif ist. Auch bei Zellen ist seit einigen Jahren bekannt, dass man sie über ihre mechanischen Eigenschaften voneinander unterscheiden kann. Bereits vor drei Jahren entwickelte Dr. Oliver Otto von der Universität Greifswald zusammen mit Wissenschaftlern der Technischen Universität Dresden die sogenannte real-time deformability cytometry (RT-DC), um die mechanischen Eigenschaften von Zellen zu messen. Bislang konnte man mit diesem methodischen Ansatz jedoch nur erfassen, wie elastisch die Zellen sind. Nun haben die Wissenschaftler die Methode so weiterentwickelt, dass sie noch einen zusätzlichen Parameter bestimmen können, die Viskosität. Was sich zunächst wenig anhört, bringt die Möglichkeiten dieser Zellanalyse einen großen Schritt voran: Die gleichzeitige Messung der beiden Parameter erlaubt es den Wissenschaftlern, in wenigen Sekunden in einem winzigen Tropfen Blut detailliert herauszufinden, welche Zelltypen sich darin befinden. Mit der neuen dynamischen (d) RT-DC können sogar bestimmte Subtypen von Immunzellen, die B- und T-Lymphozyten, voneinander unterschieden werden. „Das war bislang nur möglich, indem man Fluoreszenz-markierte Antikörper verwendet oder aufwändige Computerprogramme eingesetzt hat“, verdeutlicht DZHK-Wissenschaftler Otto, der an der Universität Greifswald die Arbeitsgruppe Biomechanik leitet.

Die markierungsfreie Methode bietet Forschern den großen Vorteil, dass sie nicht schon vorher wissen müssen, wonach sie suchen. Will man eine Zelle hingegen mit einem Fluoreszenzfarbstoff markieren, muss schon vor der Analyse bekannt sein, welche Zelltypen man aufspüren will. Denn bei herkömmlichen Methoden werden die Zellen mit einem fluoreszenzmarkierten Antikörper gekennzeichnet, der eine Struktur auf ihrer Oberfläche erkennt. Fluoreszenzmarkierte Antikörper können aber die Eigenschaften der Zellen verändern und somit anschließende Analysen zur Funktion der Zellen verfälschen. Diese Gefahr besteht bei der dRT-DC nicht.

Entscheidend für die Anwendung in der Forschung ist außerdem der hohe Durchsatz der dRT-DC, also dass mit der dRT-DC Viskosität und Elastizität von bis zu 100 Zellen pro Sekunde gemessen werden können.

Fotoshooting im Kanal

Bei der RT-DC werden die Zellen durch einen engen Kanal gedrückt, wodurch sie sich verformen. Dabei werden sie von einer Kamera aufgenommen. Bob Fregin, Doktorand in der Arbeitsgruppe von Otto, hat die Methode nun aussagekräftiger gemacht, indem er die Anzahl der Aufnahmen pro Zelle erhöht hat. „Bislang hatten wir nur eine Momentaufnahme der verformten Zelle, nun können wir in Echtzeit beobachten, wie sich ihre Form beim Durchströmen des Kanals verändert und können daraus neben der Elastizität auch berechnen, wie viskos die Zelle ist”, erklärt Fregin das Prinzip der dynamischen RT-DC.

Die Greifswalder Wissenschaftler sehen ihre Methode als eine Ergänzung zu bisherigen molekularbiologischen Analysen an. „Mit unserem Ansatz erhält man auch eine schnelle Information darüber, welche Zelltypen vorliegen und ob sich ihre Anzahl im Vergleich zu den anderen Zellen im Blut verändert hat“, erklärt Otto. „Aufbauend auf diesen Ergebnissen in Verbindung mit den mechanischen Eigenschaften der Zellen können dann weitere zielgerichtete Untersuchungen erfolgen, etwa zu den molekularen Veränderungen.“

Aus den mechanischen Eigenschaften können die Wissenschaftler auch erkennen, ob Immunzellen aktiviert sind oder nicht. Aktivierte Immunzellen sind ein Zeichen dafür, dass im Körper eine Entzündung vorliegt. „Die Fähigkeit der dRT-DC, Zellen in einem Zellgemisch zu identifizieren und zu charakterisieren, könnte relevant sein, um die Rolle des Immunsystems bei akuten und chronischen Erkrankungen besser zu verstehen“, sagt Professor Stephan Felix, Direktor der Klinik und Poliklinik für Innere Medizin B an der Universitätsmedizin Greifswald. In Greifswald wird die dRT-DC eingesetzt, um zu erforschen, wie entzündungsbedingte Herz-Kreislauf-Erkrankungen entstehen. Aus den dazu laufenden Projekten liegen bereits erste vielversprechende Ergebnisse vor..

Originalveröffentlichung:
Fregin B, Czerwinski F, Biedenweg D, Girardo S, Gross S, Aurich K, Otto O.; "High-throughput single-cell rheology in complex samples by dynamic real-time deformability cytometry."; Nat. Commun. 2019 Jan 24;10(1):415.

Fakten, Hintergründe, Dossiers

  • Immunzellen
  • Deutsches Zentrum f…
  • Universität Greifswald
  • TU Dresden
  • B-Lymphozyten
  • T-Lymphozyten

Mehr über Deutsches Zentrum für Herz-Kreislauf-Forschung e. V.

Mehr über Universität Greifswald

Mehr über TU Dresden

  • News

    Bottom-up-Synthese von kristallinen 2D-Polymeren

    Wissenschaftlern des Center for Advancing Electronics Dresden (cfaed) an der TU Dresden ist es erstmals gelungen, flächige monomolekulare Quasi-2D-Polymere durch einen „Bottom-Up“-Prozess, also einen gezielten stufenweisen Aufbau der Molekülschichten, zu synthetisieren. Dafür wurde eine neu ... mehr

    Leistungsstärkere weiße OLEDs

    Organische Leuchtdioden (OLEDs) haben dank intensiver Forschungsarbeiten in den letzten Jahrzehnten den Elektronikmarkt immer weiter erobert – von OLED-Handydisplays bis zu herausrollbaren Fernsehbildschirmen, die Liste der Anwendungsfelder ist lang. Im Fokus der aktuellen OLED-Forschung st ... mehr

    Leber besitzt Struktur ähnlich von Flüssigkristallen

    Das bisher benutzte, aus dem Jahr 1949 stammende Modell der Leberläppchen konnte nur bedingt veranschaulichen, wie Lebergewebe strukturiert und gebildet wird. Wissenschaftler der Max-Planck-Institute für molekulare Zellbiologie und Genetik sowie für Physik komplexer Systeme haben nun zusamm ... mehr

  • Autoren

    Dr. Torsten Tonn

    Torsten Tonn ist Professor für Transfusionsmedizin an der Medizinischen Fakultät Carl Gustav Carus, Technische Universität Dresden. Er ist ebenfalls Geschäftsführer des DRKBlutspendedienstes Nord-Ost. Vor dieser Stellung leitete er den Bereich für Zell- und Gentherapie des Instituts für Tra ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.