q&more
Meine Merkliste
my.chemie.de  
Login  

News

Auf die Winkel kommt es an: Moiré-Effekt verändert elektronische Eigenschaften von dreilagigem Material

Abbildung: Swiss Nanoscience Institute, Universität Basel

Eine Graphenschicht (schwarz) aus sechseckig angeordneten Kohlenstoffatomen wird in zwei Lagen aus Bornitridatomen verpackt, die ebenfalls in Sechsecken angeordnet sind. Durch die Überlagerung entstehen wabenförmige Muster verschiedener Grösse.

12.03.2019: Werden eine hauchdünne Graphen- und eine Bornitridschicht leicht verdreht übereinandergelegt, verändern sich dadurch deren elektronische Eigenschaften. Physiker der Universität Basel haben nun erstmals gezeigt, dass eine Verdrehung auch bei einem dreilagigen Sandwich aus Kohlenstoff und Bornitrid zu neuen Materialeigenschaften führt. Das vergrössert den Katalog an möglichen synthetischen Materialien erheblich, berichten die Forscher in «Nano Letters».

Im letzten Jahr sorgten US-Wissenschaftler für grosses Aufsehen. Durch die Verdrehung von zwei übereinanderliegenden Graphenlagen um einen magischen Winkel von 1,1 Grad gelang es ihnen, Graphen supraleitend zu machen – ein markantes Beispiel dafür, dass völlig neue elektronische Eigenschaften entstehen können, wenn hauchdünne Materialien miteinander kombiniert werden.

Gezielte Ausrichtung

Wissenschaftler des Swiss Nanoscience Institute und des Departements Physik der Universität Basel haben dieses Konzept nun einen Schritt weiterentwickelt. Sie verpackten eine Schicht Graphen zwischen zwei Bornitridschichten, was häufig gemacht wird, um die empfindliche Kohlenstoffstruktur zu schützen. Dabei richteten sie die Schichten sehr genau am Kristallgitter des Graphens aus.

Den Effekt, den die Physiker um Professor Christian Schönenberger beobachteten, kennen wir als Moiré-Effekt: werden zwei regelmässige Muster übereinandergelegt, entsteht ein neues Muster mit einem grösseren Raster.

Neue Übergitter aus drei Lagen

Die Bildung solcher Übergitter beobachtete auch Lujun Wang, Mitglied der SNI-Doktorandenschule aus dem Schönenberger-Team, als er Lagen aus Bornitrid und Graphen miteinander kombinierte. In allen Schichten sind die Atome sechseckig angeordnet. Werden sie aufeinandergelegt, entstehen grössere regelmässige Muster, deren Grösse vom Winkel zwischen den Schichten abhängt.

Bekannt war bisher, dass dies mit einer zweilagigen Kombination aus Graphen und Bornitrid funktioniert, jedoch ist es bisher nicht gelungen, Effekte einer zweiten Bornitridschicht zu finden.

Beim Experiment der Basler Physiker mit drei Lagen formten sich zum einen zwei Übergitter, die zwischen der Graphenschicht und der oberen bzw. unteren Lage Bornitrid entstanden. Zum anderen entstand durch die Überlagerung aller drei Schichten eine noch wesentlich grössere Überstruktur.

Originalveröffentlichung:
Lujun Wang, Simon Zihlmann, Ming-Hao Liu, Peter Makk, Kenji Watanabe, Takashi Taniguchi, Andreas Baumgartner, and Christian Schönenberger; "New Generation of Moiré Superlattices in Doubly Aligned hBN/Graphene/hBN Heterostructures"; Nano Letters (2019).

Fakten, Hintergründe, Dossiers

  • Supraleitung
  • Übergitter

Mehr über Universität Basel

  • News

    Mit Diamanten den Eigenschaften zweidimensionaler Magnete auf der Spur

    Physikern der Universität Basel ist es erstmals gelungen, die magnetischen Eigenschaften von atomar dünnen Van-der-Waals-Materialien auf der Nanometerskala zu messen. Mittels Diamant-Quantensensoren konnten sie die Stärke von Magnetfeldern an einzelnen Atomlagen aus Chromtriiodid ermitteln. ... mehr

    Tatort Schizophrenie: 30 Gene unter Verdacht

    Die Forschungsgruppe von Prof. Alex Schier, Direktor des Biozentrums der Universität Basel, hat 30 Gene identifiziert, die im Zusammenhang mit Schizophrenie stehen. Das Team konnte aufzeigen, welche krankhaften Veränderungen im Gehirn und Verhaltensauffälligkeiten durch die Gene ausgelöst w ... mehr

    Alarm! Wie verletzte Pflanzenzellen ihre Nachbarn warnen

    Alle Organismen können verletzt werden. Aber was passiert eigentlich, wenn eine Pflanze verletzt wird? Wie kann sie heilen und Infektionen vermeiden? Über die Mechanismen der Wundreaktion bei Pflanzen berichtet ein internationales Forschungsteam von der Universität Basel und der Universität ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.