q&more
Meine Merkliste
my.chemie.de  
Login  

News

Durchbruch für die Graphenforschung: Wissenschaftler im Zickzack-Fieber

Forscher stellen stabile und große Graphenstücke mit speziellem Randmuster her

FAU/Konstantin Amsharov

Der begehrte Zickzackrand ist entweder bei versetzten Wabenreihen (blau und lila) oder bei vierarmigen Sterne um vier Graphenwaben in der Mitte (rot und grün) zu finden.

30.01.2019: Graphen ist für den Einsatz in der Nanoelektronik ein vielversprechendes Material. Die elektronischen Eigenschaften hängen unter anderem stark davon ab, wie die Ränder der Kohlenstoffschicht beschaffen sind – besonders interessant sind Zickzack-Muster. Doch bisher ließ sich dieses Randmuster praktisch nicht erzeugen. Chemikern und Physikern der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) ist es nun gelungen, stabiles Nanographen mit Zickzack-Rand herzustellen – noch dazu auf eine vergleichsweise einfache Weise.

Bay (Bucht), fjord (Fjord), cove (Nische), arm-chair (Armlehne) und zig-zag (Zickzack) – wenn sich Chemiker diese Begriffe zuwerfen, ist klar wovon sie sprechen: Nanographen. Oder besser gesagt beschreiben sie damit, wie die Ränder des Nanographens, also von kleinen Graphenfragmenten, beschaffen sind. Bei Graphen handelt es sich um einlagige Kohlenstoffstrukturen, bei dem jedes Kohlenstoffatom von drei weiteren umgeben ist. Dadurch entsteht ein Muster wie in Bienenwaben mit Atomen in den jeweiligen Ecken. Nanographen ist ein aussichtsreicher Kandidat, um die vorhandene Mikroelektronik auf Siliziumbasis in Zukunft zu ersetzen und auf die Nanoebene zu bringen.

Die elektronischen Eigenschaften des Materials hängen stark von der Form, Größe und insbesondere der Peripherie, also wie die Ränder strukturiert sind, ab. Ein besonders geeignetes Muster ist die Zickzack-Peripherie, weil bei ihr die Elektronen als Ladungsträger beweglicher sind als bei anderen Randstrukturen. Das bedeutet, dass beim Einsatz von Zickzack-Graphenstücken in nanoelektronischen Bauteilen die Frequenzen für Schaltungen höher sein könnten.

Das Problem, an dem bisher Materialwissenschaftler scheiterten, wenn sie allein nur Zickzack-Nanographen untersuchen wollten: Ausgerechnet diese Form führt dazu, dass die eigentlich gewünschten Verbindungen nicht stabil sind und nicht kontrolliert hergestellt werden können. Dies ist jedoch nötig, um die elektronischen Eigenschaften zunächst detailliert untersuchen zu können.

Die Wissenschaftler um PD Dr. Konstantin Amsharov vom Lehrstuhl für Organische Chemie II haben genau das jetzt geschafft: Sie haben nicht nur einen einfachen Weg gefunden, Zickzack-Nanographen zu synthetisieren. Ihre Vorgehensweise zeigt darüber hinaus eine fast hundertprozentige Ausbeute und ist geeignet, große Mengen herzustellen – eine technisch relevante Menge haben sie im Labor produziert.

Die FAU-Forscher erzeugen dafür in einem ersten Schritt Vorläufermoleküle, die sie dann in mehreren Ringschlüssen, der sogenannten Cyclisierung, zu den ringförmigen Waben zusammenfügen. Am Ende kommen Graphenfragmente aus versetzten Wabenreihen oder vierarmige Sterne um einen Mittelpunkt aus vier Graphenwaben heraus – am Rand das begehrte Zickzack-Muster. Doch warum führt dieser Weg zu stabilem Zickzack-Nanographen? Der Grund liegt darin, dass bereits während der Synthese das Produkt direkt kristallisiert – die Moleküle haben im festen Zustand keinen Kontakt zu Sauerstoff. In Lösung zersetzen sich die Strukturen durch Oxidation jedoch schnell.

Mit ihrem Ansatz sind sie in der Lage, große Graphenstücke aufzubauen, bei denen sie die Form inklusive der Ränder kontrollieren können. Dieser Durchbruch in der Graphenforschung eröffnet die Chance, schon bald viele interessante Nanographenstrukturen herstellen und untersuchen zu können – die Grundlage, um das Material in nanoelektronischen Bauteilen überhaupt einsetzen zu können.

Originalveröffentlichung:
Dominik Lungerich et al.; "Dehydrative π-extension to nanographenes with zig-zag edges"; Nature Communications; Volume 9, Article number: 4756 (2018).

Fakten, Hintergründe, Dossiers

  • Cyclisierung

Mehr über Friedrich-Alexander-Universität Erlangen-Nürnberg

  • News

    Reißverschluss auf Nano-Ebene

    Für die Nanoelektronik sind kohlenstoffbasierte Nanostrukturen vielversprechende Materialien. Doch dafür müssten sie sich häufig auf nicht-metallischen Oberflächen bilden, was nur schwer möglich ist – bis jetzt: Wissenschaftler der FAU haben eine Methode gefunden, Nanographen auf Metalloxid ... mehr

    Zellen, die den Darm zerstören

    Mehr als 400.000 Menschen in Deutschland sind von den chronisch-entzündlichen Darmerkrankungen Morbus Crohn oder Colitis ulcerosa betroffen, die in Schüben verlaufen und das Darmgewebe zerstören. Die chronische Entzündung kann nach wie vor bei einer Vielzahl von Patienten nicht ausreichend ... mehr

    Gestörte Transportwege in Nervenzellen als eine Ursache von Parkinson

    Staus sind auch im Gehirn möglich – und schädlich. Das haben Wissenschaftler des Universitätsklinikums der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) jetzt bestätigen können. Sie konnten belegen, dass gestörte Transportwege in Nervenzellen eine bedeutende Ursache für die Entste ... mehr

  • q&more Artikel

    Modellierte Medikamente

    Computergestütztes Medikamentendesign (CADD) ist nichts Neues. Das Journal of ­Computer-Aided Molecular Design (Springer) wurde 1987 gegründet, als die 500 weltweit schnellsten Computer langsamer als ein heutiges Smartphone waren. Damit ist dieses Feld ein Vierteljahrhundert alt. mehr

  • Autoren

    Prof. Dr. Timothy Clark

    Tim Clark, geb. 1949 in England, promovierte 1973 an der Queens Universität Belfast. Er ist Direktor des Computer-Chemie-­Centrums in Erlangen sowie des Centre for Molecular Design an der Universität Portsmouth, UK. Er entwickelt und wendet Modelle und Simulationstechniken für Chemie, Werks ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.