q&more
Meine Merkliste
my.chemie.de  
Login  

News

Genschalter bei der Arbeit beobachtet

Transkriptionsfaktor SRF "live" in Zellen untersucht

Lisa Hipp

Lichtblattmikroskopische Aufnahme: SRF Moleküle interagieren nur kurz (grün) oder für längere Zeit (rot) mit der DNA

29.01.2019: Ein Lichtschalter hat zwei Zustände, er ist entweder an oder aus. Bei einem Genschalter ist die Sache etwas komplizierter. Wie komplex und dynamisch das Zusammenspiel zwischen DNA und Genregulatoren ist, haben Ulmer Forscher am Beispiel des Transkriptionsfaktors SRF untersucht, und zwar „live“ auf Einzelzellebene. Das Ergebnis: eine wesentliche Rolle bei der Steuerung der genetischen Aktivität spielen Bindungsstelle und Bindungsdauer, über die der untersuchte Transkriptionsfaktor mit der DNA interagiert.

Transkriptionsfaktoren sind Genregulatoren, die mit der sogenannten Transkription einen biologischen Grundprozess in Gang bringen. Dabei wird der genetische Code der DNA ausgelesen und als Vorversion eines Bauplanes für die spätere Synthese von Biomolekülen bereitgestellt. Die Genregulatoren steuern also die genetische Aktivität. „Für unsere Untersuchungen haben wir uns den Transkriptionsfaktor SRF ausgesucht, der unter anderem eine Schlüsselrolle bei der Embryonalentwicklung spielt und auch im ausgewachsenen Organismus, vor allem im Gehirn, eine Vielzahl von Genen reguliert“, erklärt Professor Bernd Knöll vom Institut für Physiologische Chemie der Universität Ulm.

„Bisher war bereits bekannt, dass SRF in seiner aktivierten Form bis zu 1000 Gene in einer Zelle anschaltet. Stimuliert wird er dazu von bestimmten Wirkstoffen, beispielsweise durch Wachstumsfaktoren“, erläutert Lisa Hipp, Doktorandin am Institut für Physiologische Chemie und Erstautorin der Studie. Die Ulmer Wissenschaftler konnten nun erstmals zeigen, dass die Genaktivierung vom Bindungsverhalten einzelner SRF-Moleküle abhängt, das sich nach der Zellstimulation massiv verändert: die Genregulatoren binden dann länger an die DNA, und die Anzahl der längergebundenen SRF-Moleküle nimmt ebenfalls zu. Entscheidend dabei sind nicht nur die Bindungsstellen, also die DNA-Abschnitte, an denen der untersuchte Genregulator andockt, sondern auch die Aktivität von SRF-Partnerproteinen (wie dem Kofaktor MRTF) beeinflusst das Bindungsverhalten des Transkriptionsfaktors SRF.

Um diese Prozesse auf Einzelzellebene sichtbar zu machen, haben die Forscher auf eine besondere Mikroskopietechnik zurückgegriffen, die Untersuchungen in lebenden Zellen mit molekularer Auflösung erlaubt: die sogenannte Lichtblattmikroskopie. Unterstützt wurden sie dabei von den Ulmer Biophysikprofessoren Christof Gebhardt und Jens Michaelis aus dem Institut für Biophysik, die dieses besondere fluoreszenzmikroskopische Bildgebungsverfahren weiterentwickelt haben. Bei diesem „Single Molecule Tracking“-Verfahren können speziell markierte Biomoleküle und deren Bewegungen in lebenden Zellen sichtbar gemacht werden. Um die Bindungsaktivitäten über die Zeit zu verfolgen, wurden die SRF-Moleküle mit einem photostabilen fluoreszierenden Biofarbstoff markiert. Die hohe Sensitivität bei der Aufnahme kommt zustande, weil nur eine dünne Schicht der Probe beleuchtet wird. Außerdem ist das Verfahren so schonend, dass die Biomoleküle keinen Schaden nehmen.

„Unsere gemeinsame Studie hat grundlegende Erkenntnisse zur Aktivität von Transkriptionsfaktoren und zur Genregulierung zutage gebracht. Diese helfen dabei, die komplexe und hochdynamische Interaktion zwischen Genschaltern und der DNA besser zu verstehen“, so das Ulmer Forscherteam. „Solche komplexen Prozesse lassen sich mittlerweile nur durch fachübergreifende und transdisziplinäre Zusammenarbeit entschlüsseln, bei der Forscherinnen und Forscher mit unterschiedlichen Expertisen zusammenarbeiten. In unserem Fall waren dies Zellbiologen und Biophysiker“, betonen die Autoren der Studie.

Originalveröffentlichung:
"Single-molecule imaging of the transcription factor SRF reveals prolonged chromatin-binding kinetics upon cell stimulation"; Hipp L, Beer J, Kuchler O, Reisser M, Sinske D, Michaelis J, Gebhardt JCM, Knöll B.; Proc Natl Acad Sci U S A; 2019 Jan 15;116(3):880-889.

Fakten, Hintergründe, Dossiers

  • Transkriptionsfaktoren
  • Genschalter
  • Genregulation
  • Zellen
  • Zellstimulation
  • Lichtblattmikroskopie

Mehr über Uni Ulm

  • News

    Coronavirus sabotiert Immunabwehr

    Das neue pandemische Coronavirus SARS-CoV-2 hat die menschliche Immunantwort fest im Griff. Wissenschaftler der LMU München und des Universitätsklinikums Ulm haben nun gemeinsam aufgedeckt, wie das Virus durch gezielte Sabotage der zellulären Proteinproduktion das angeborene Immunsystem lah ... mehr

    „Winterschlaf“ hält blutbildende Stammzellen jung

    Alle Gewebe altern. Besonders betroffen von Alterungsprozessen ist das blutbildende System. Denn die hämatopoetischen Stammzellen (HSC), aus denen Blut- und Immunzellen hervorgehen, altern besonders schnell. Ein internationales Team um Forschende aus Ulm und Barcelona hat entdeckt, dass es ... mehr

    Magnetische Nanopartikel mit ionischen Flüssigkeiten für die Wasseraufbereitung

    In vielen Teilen der Welt ist der Zugang zu sauberem Trinkwasser alles andere als selbstverständlich. Filtration großer Mengen ist aufgrund der langsamen Durchflussgeschwindigkeiten jedoch kaum praktikabel. In der Zeitschrift Angewandte Chemie stellen Wissenschaftler einen neuartigen Ansatz ... mehr

  • q&more Artikel

    Synthetische Rezeptoren für Viren

    Durch die Fortschritte in der Polymerchemie und Nanotechnologie können Nanomaterialien heute mit einer Vielzahl an Eigenschaften und Funktionalitäten synthetisch hergestellt werden. Dies motiviert die Herstellung bioinspirierter Strukturen und Systeme, die beispielsweise in ihren Bindungse ... mehr

  • Autoren

    Prof. Dr. Boris Mizaikoff

    Boris Mizaikoff, Jahrgang 1965, promovierte 1996 in Analytischer Chemie an der Technischen Universität Wien und hat sich im Jahr 2000 ebendort für das Fach Analytische Chemie habilitiert. Im Anschluss war er 2000–2007 am Georgia Institute of Technology (Atlanta, USA) an der School of Chemis ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.