q&more
Meine Merkliste
my.chemie.de  
Login  

News

Ammoniak auf Phosphorkatalysator

Ammoniaksynthese durch Elektroreduktion von Stickstoff auf Nanoblättchen aus schwarzem Phosphor

© Wiley-VCH

17.01.2019: Nach über 100 Jahren Haber-Bosch-Verfahren suchen Wissenschaftler nach weniger energieintensiven Alternativen zur Herstellung von Ammoniak. Ein elektrolytisches Verfahren könnte hierbei der schwarze Phosphor katalysieren, haben chinesische Wissenschaftler jetzt herausgefunden. Wie sie in der Zeitschrift Angewandte Chemie schreiben, sind die nanodünnen Schichten von schwarzem Phosphor ein hochselektiver und effizienter Katalysator für die Reduktion von Stickstoff zu Ammoniak.

Ammoniak wird in fast allen Industriezweigen gebraucht, für die Herstellung von Düngemitteln, Feinchemikalien und Medikamenten. Seit einem Jahrhundert wird dieser Rohstoff nach dem Haber-Bosch-Verfahren hergestellt: Stickstoff aus der Luft wird von Wasserstoff oder Synthesegas an einem Katalysator und unter hohem Druck und bei hohen Temperaturen reduziert. Allerdings benötigt der Prozess enorm viel Energie. Ein bis zwei Prozent des globalen Energieverbrauchs entfallen inzwischen auf die industrielle Ammoniakproduktion.

Daher suchen Wissenschaftler nach umweltfreundlicheren Alternativen. Im Fokus stehen insbesondere metallfreie Katalysatoren, die unter Normalbedingungen einen hohen Wirkungsgrad haben. Ein derzeit hochaktueller Kandidat ist Phosphor, und zwar in seiner unreaktivsten, ungiftigen Form, als schwarzer Phosphor. In der Elektrotechnik wird er derzeit intensiv erforscht, weil er leicht metallische und ungewöhnliche elektronische Eigenschaft hat. Als Katalysator könnte seine charakteristische wellblechartige Struktur bei der Umsetzung von reaktionsträgen Molekülen helfen.

Um einen solchen Phosphorkatalysator zu erhalten, stellten die Forscher Haihui Wang an der South China University of Technology, Guangzhou, China, und seine Kollegen zunächst dünnen Schichten von schwarzem Phosphor her, und zwar „durch eine einfache Flüssig-Abblättertechnik aus dem schwarzen Phosphormaterial“, wie sie in ihrem Artikel schreiben. Anschließend betteten sie die Katalysator-Nanoblätter in eine Kohlenstoff-Faser-Elektrode ein. Der Stickstoff war in der gesättigten Elektrolytlösung vorhanden.

Unter Spannung produzierte die elektrochemische Zelle sofort selektiv Ammoniak aus Stickstoff. So viel, dass die schwarzen Phosphorblättchen in ihrer Leistung „die meisten nichtmetallischen und metallischen derzeit erforschten Katalysatoren“ übertrafen, so der Bericht. Die Autoren wollten dann wissen, warum die Phosphorblättchen so aktiv und selektiv waren.

Aus Berechnungen am Computer ging hervor, dass der Phosphor mit seinen vielen Falten, anders als andere schicht- oder blattbildenden Materialien, ideale Anknüpfungsstellen für Stickstoff bietet. An den Kanten passte die elektronische Struktur ausgezeichnet für Bindung, Aktivierung und Reduktion des reaktionsträgen Stickstoffmoleküls, ohne viel Energie aufwenden zu müssen.

Der schwarze Phosphor in seiner Nanoblättchenform war zwar aktiv und selektiv. Bei einer längerfristigen Auslastung setzten dann aber doch unerwünschte Oxidationsprozesse ein. „Daher müssen noch weitere Verbesserungen gemacht werden, um den Abbau des schwarzen Phosphors zu verhindern“, so die Autoren.

Diese Arbeit zeigt neue Anwendungsmöglichkeiten für schwarzen Phosphor. Als Katalysator für die Aktivierung und Reduktion von Stickstoff übertrifft er viele traditionelle Katalysatoren. Schwarze Phosphorelektroden könnten es in Zukunft daher vielleicht mehr geben. Und vielleicht auch einmal eine Alternative für den Haber-Bosch-Prozess.

Originalveröffentlichung:
Haihui Wang et al.; "Ammonia Synthesis Under Ambient Conditions: Selective Electroreduction of Dinitrogen to Ammonia on Black Phosphorus Nanosheets"; Angewandte Chemie; 2018

Fakten, Hintergründe, Dossiers

Mehr über Angewandte Chemie

  • News

    Sichtbare Fresszellen

    Bestimmte Aufgaben des Immunsystems im Gehirn werden von Zellen des Typs Mikroglia erfüllt. Mit einer eigens entwickelten Fluoreszenzsonde können Forscher aus Korea und Singapur diese Art von Fresszellen nun direkt markieren und durch Bildgebung sichtbar machen. Dies gelang in Zellkultur un ... mehr

    Elektrochemische Energie aus Meerwasser

    Unterwasserfahrzeuge, Tauchroboter oder Detektoren benötigen eine eigene Energieversorgung, wenn sie über längere Zeit unabhängig von Begleitschiffen unter Wasser betrieben werden sollen. Praktikabler als Akkus ist eine direkte elektrochemische Energiegewinnung aus Meerwasser. Ein neuer kos ... mehr

    Kleines in Zellen beobachten

    Zellen reagieren auf Störungen häufig mit einem veränderten Stoffwechsel. Die Veränderung in den Metaboliten direkt zu beobachten ist schwierig. Britische Wissenschaftler haben nun in einer internationalen Kooperation neue, kleine Fluorophore namens SCOTfluors entwickelt. Die Fluoreszenzfar ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.