19.10.2018 - Empa (Eidgenössische Materialprüfungs- und Forschungsanstalt)

Was macht Graphen in der Lunge?

Dreidimensionale Zellkulturen «atmen» Partikel ein

Graphen gilt als Material der Zukunft. Allerdings ist bislang wenig bekannt, ob und wie sich Graphen auf unsere Gesundheit auswirkt, sollte es in den Körper gelangen. Ein Forscherteam der Empa und des Adolphe-Merkle-Institut (AMI) in Fribourg haben nun erstmalig Studien an einem dreidimensionalen Lungenmodell durchgeführt, um das Verhalten von Graphen und Graphen-ähnlichen Materialien nach dem Einatmen zu untersuchen.

Es ist zug- und reissfest, hochelastisch und elektrisch leitfähig. Graphen verfügt über vielerlei aussergewöhnliche Eigenschaften, was revolutionäre Anwendungen in den unterschiedlichsten Bereichen ermöglicht. Nicht umsonst hat die EU das «Graphene Flagship» ins Leben gerufen, das mit einer Milliarde Euro unterstützt wird und somit als grösste europäische Forschungsinitiative gilt. Als Teil dieses riesigen Projekts bringt auch die Empa ihr Know-how ein, denn im Rahmen der europaweiten Graphen-Forschung spielen allfällige gesundheitliche Aspekte und Auswirkungen auf den menschlichen Organismus eine wesentliche Rolle.

Aus diesen Aktivitäten entstand nun zusätzlich ein vom Schweizerischen Nationalfonds (SNF) gefördertes Projekt, das vor kurzem an der Empa und am AMI angelaufen ist. Dabei kommt ein zelluläres 3-D-Lungenmodell zum Einsatz, mit dem die Forscher herausfinden möchten, welche Auswirkungen Graphen und Graphen-ähnliche Materialien auf die menschliche Lunge haben können – und das unter möglichst realitätsnahen Bedingungen. Eine Herausforderung, denn Graphen ist nicht gleich Graphen. Je nach Herstellungsmethode und Prozessierung entstehen unterschiedlichste Formen und Qualitäten des Materials, die wiederum verschiedene Reaktionen in der Lunge auslösen können.

Dreidimensionale Zellkulturen «atmen» Partikel ein

Das Forschungsteam um Peter Wick, Tina Bürki und Jing Wang von der Empa und Barbara Rothen-Rutishauser und Barbara Drasler vom AMI hat kürzlich seine ersten Ergebnisse im Fachmagazin «Carbon» publiziert. Mit dem 3-D-Lungenmodell ist es den Forschern gelungen, die tatsächlichen Bedingungen an der Luft-Blut-Schranke sowie die Auswirkung von Graphen im Lungengewebe realitätsgenau nachzustellen – ohne Versuche an Tier oder Mensch. Dabei handelt es sich um ein Zellmodell, das die Lungenalveolen abbildet. Herkömmliche In-vitro-Tests arbeiten mit Zellkulturen aus nur einem Zelltypus – das etablierte Lungenmodell dagegen besteht aus drei unterschiedlichen Zelltypen, die die Gegebenheiten innerhalb der Lunge simulieren, nämlich Alveolarepithelzellen sowie zwei Arten von Immunzellen – Makrophagen und dendritische Zellen.

Ein weiterer Faktor, der bei Versuchen in vitro bislang kaum beachtet wurde, ist der Kontakt der Graphen-partikel über die Luft. Gewöhnlich werden Zellen in einer Kulturschale in einer Nährlösung kultiviert und in dieser Form Materialien, zum Beispiel Graphen, ausgesetzt. In der Realität, also an der Lungenbarriere, ist dies allerdings anders. «Der menschliche Organismus kommt am ehesten durch die Atemluft mit Graphen-partikeln in Kontakt», so Tina Bürki von der Empa-Forschungsabteilung «Particles-Biology Interactions». Die Partikel werden also eingeatmet und kommen direkt mit dem Lungengewebe in Berührung. Das neue Lungenmodell ist so aufgebaut, dass sich die Zellen auf einer porösen Filtermembran an der Luft-Flüssigkeit-Grenze befinden und die Forschenden die Graphenpartikel mit Hilfe eines Zerstäubers auf die Lungenzellen sprühen, um den Vorgang im Körper möglichst genau nachzustellen. Die dreidimensionale Zellkultur «atmet» quasi die Graphen-Stäube ein.

Keine akuten Schädigungen entdeckt

Diese Versuche im 3-D-Lungenmodell brachten nun erste Resultate. Die Forscher konnten nachweisen, dass sich keine akuten Schäden in der Lunge bilden, wenn Lungenepithelzellen in Kontakt mit Graphenoxid (GO) oder sogenannten Graphennanoplatelets (GNP) kommen. Dazu gehören Reaktionen wie der plötzliche Zelltod, oxidativer Stress oder Entzündungen.

Um auch chronische Veränderungen im Körper aufzuspüren, läuft das SNF-Projekt drei Jahre; als Nächstes stehen langfristige Studien mit dem Lungenmodell an. Wick und sein Team setzen die Lungenzellen dabei nebst reinen Graphenepartikeln auch abgeriebenen Graphenpartikeln aus Komposit-Materialien aus, die klassischerweise zur Verstärkung von Polymeren eingesetzt werden. Daran beteiligt ist Jing Wang von der Empa-Abteilung «Advanced Analytical Technologies». Um auch hier die Menge der Graphenpartikel, denen Menschen ausgesetzt sind, möglichst realistisch abschätzen zu können, untersucht und quantifiziert Wang den Abrieb der Komposit-Materialien. Anhand dieser Daten setzt das Team das 3-D-Lungenmodell realitätsnahen Gegebenheiten aus und ist in der Lage, längerfristig Voraussagen zur Toxizität von Graphen und Graphen-ähnlichen Materialien zu treffen.

Fakten, Hintergründe, Dossiers

  • Zellmodelle
  • Graphenoxid
  • Graphennanoplättchen

Mehr über Empa

  • News

    Gesucht: Die nächste Superbatterie

    Die Weltwirtschaft verlangt nach immer mehr Lithium-Ionen-Batterien. Elektroautos sind darauf angewiesen, ebenso Laptops, Smartphones und elektrische Werkzeuge für den Baubereich und den Heimwerkersektor. Bald wird ein weiterer Bereich hinzukommen, der im grossen Stil aufladbare Batterien be ... mehr

    Neuartiger optischer Biosensor für das COVID-19-Virus

    Einem Team von Forschern der Empa, der ETH Zürich und des Universitätsspitals Zürich ist es gelungen, einen neuartigen Sensor zum Nachweis des neuen Coronavirus zu entwickeln. Er könnte künftig eingesetzt werden, um die Virenkonzentration in der Umwelt zu bestimmen – beispielsweise an Orten ... mehr

    Komplexe Zelluloseobjekte drucken

    Forscher der ETH Zürich und der Empa druckten mit einem Zellulose-Verbundmaterial verschiedene Objekte, deren Zellulosegehalt höher liegt als derjenige von anderen 3D-gedruckten zellulosebasierten Gegenständen. Ein Trick half dabei. Bäume und andere Pflanzen machen es vor: Sie stellen Zell ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: