07.08.2018 - Karl-Franzens-Universität Graz

Wie man Biosprit aus Hefezellen gewinnt

Könnte Hefe bald wertvolle Rohstoffe wie Raps, Mais oder Rüben ersetzen?

Biologisch hergestellter Treibstoff ist einer der Hoffnungsträger einer künftigen Energiewende. Verbrennungsmotoren mit klimaneutral hergestelltem Diesel oder Benzin könnten neben E-Mobilität den Ausstieg aus fossilen Energieträgern unterstützen. Derzeit muss dieser „Biosprit“ aber aus hochwertigen Rohstoffen wie Raps oder Mais hergestellt werden, dessen Anbau große Ackerflächen benötigt. Forschergruppen aus aller Welt suchen daher intensiv nach Alternativen. Eine davon wäre, mit Hefezellen aus Zelluloseabfällen Fett zu erzeugen, das dann in Biodiesel umgewandelt werden kann. Ein vom Wissenschaftsfonds FWF finanziertes Projekt einer Gruppe um den Molekularbiologen Klaus Natter von der Universität Graz hatte zum Ziel, die Fettproduktion in Hefezellen durch gentechnische Veränderung zu erhöhen.

Gut erforschte Hefe

Natter und seine Gruppe profitieren davon, dass Hefezellen sehr gut verstanden sind. „Die Genome der Hefen, mit denen wir arbeiten, sind vollständig sequenziert, was den Stoffwechsel betrifft, sind nahezu alle Prozesse, die in der Zelle ablaufen, bekannt“, sagt Natter im Gespräch mit scilog. Der Forscher spricht von der sogenannten „Bäckerhefe“ und den „Fetthefen“. „Erstere ist die Hefe, über die man am meisten weiß. Sie wird in den meisten Nahrungsmitteln verwendet, für Brot, Bier, Wein und eben auch in der Biosprit-Produktion. Seit Mitte vergangenen Jahrhunderts ist sie ein beliebtes Modell in der Forschung. Deshalb weiß man über diese viel mehr als über alle anderen“, sagt Natter. Mit Fetthefen arbeite man hingegen erst seit Kurzem. „Sie ist wegen des namensgebenden Fettgehalts interessant.“ Fetthefen lagern bis zu 20 Prozent ihres Gesamtgewichts an Fett ein, die Bäckerhefe zwischen fünf und zehn Prozent.

Bis zu 70 Prozent Fett

Mittels Computersimulationen des Zellstoffwechsels versuchte Natters Forschergruppe ein Jahr lang, ein genaues Modell der Fetthefe „Yarrowia lipolytica“ zu erstellen, das alle Stoffwechselprozesse der Zelle abbildet, und Gene zu identifizieren, deren Veränderung den Fettgehalt erhöhen könnte. Diese Ergebnisse konnten durch darauffolgende Experimente bestätigt werden: Sowohl Fetthefe als auch Bäckerhefe konnten auf diese Art hinsichtlich der Fettproduktion optimiert werden. Die genetisch veränderte Fetthefe lagerte daraufhin zwischen 50 und 60 Prozent Fett ein. Auch bei der eigentlich fettärmeren Bäckerhefe konnte der Fettgehalt um ein Mehrfaches gesteigert werden, ein überraschendes Ergebnis. „Das zeigt, dass die Unterteilung in fette oder nicht fette Hefen nicht ganz korrekt ist“, verdeutlicht Natter. Es könnte durchaus sein, dass die besser verstandene Bäckerhefe der aussichtsreichere Kandidat zur Fettproduktion ist. Der Forscher betont, dass die veränderten Hefezellen ganz normal lebensfähig sind und nur etwas langsamer wachsen als die Wildtypen.

Natters Gruppe ist also zufrieden mit den Ergebnissen dieses Grundlagenprojekts, doch es gibt noch eine Reihe von Hürden auf dem Weg zur industriellen Umsetzung. „Um den Prozess nachhaltig zu machen, müsste der Nährstoff für diese Hefen aus Abfällen bestehen“, erklärt Natter. Von geeigneten Enzymen zerlegte Zellulose wäre ein guter Kandidat. „Dann würden beim Abernten eines Maisackers nicht mehr die Maiskolben, sondern der Rest zur Biodieselproduktion verwendet werden.“ Im Moment sei das Verfahren allerdings noch nicht wirtschaftlich. Natter sieht nur einen ernsthaften Konkurrenten zur Hefe, was eine künftige Biodieselproduktion angeht: Algen. Diese seien reizvoll, weil sie direkt Sonnenlicht und CO2 in Fett umwandeln könnten, allerdings würden auch sie große Flächen benötigen und im Vergleich zu Hefe sehr langsam wachsen. – Hefe vermehrt sich etwa zehn Mal schneller.

Hefen, die Diesel ausscheiden

Den Fett-Ertrag von Hefe zu steigern, ist nur ein wichtiger Meilenstein auf dem Weg zur nachhaltigen Biodiesel-Produktion. Natter macht auf zwei weitere Forschungsrichtungen aufmerksam, die künftig den Prozess erleichtern sollen. Ein wichtiger Punkt ist der „Zellaufschluss“, also die Frage, wie man das Fett aus der Zelle bekommt. „Das Extrahieren der Fetttröpfchen aus der Zelle ist ein aufwändiger Prozess“, erklärt Natter. Ein wichtiger Schritt in Richtung einer biotechnologischen Umsetzung wäre es daher, die Zelle dazu zu bringen, dass sie das produzierte Fett von selbst ausscheidet. Dafür gebe es derzeit noch keine brauchbare Lösung, so der Forscher.

Alternativ dazu gibt es Ansätze, die Hefezellen nicht nur das Fett, sondern direkt den Biodiesel produzieren zu lassen, der von den Zellen sekretiert werden kann. Das funktioniert grundsätzlich, doch die Ausbeuten sind derzeit noch viel geringer als bei der Fettspeicherung in der Zelle. Weitere Grundlagenforschung soll helfen, diesen Prozess besser zu verstehen und zu optimieren. Dann könnten in Zukunft, so die Hoffnung, Hefezellen, die sich von Zellulose ernähren, direkt Biodiesel produzieren und diesen selbstständig ausscheiden. „In der Grundlagenforschung zur Fettproduktion von Hefe sind wir inzwischen sehr weit“, bestätigt Natter. „Jetzt geht es darum, das in die Anwendung zu bringen.“

Fakten, Hintergründe, Dossiers

  • Fetthefen
  • Yarrowia lipolytica

Mehr über Karl-Franzens-Universität Graz

  • News

    Biotech Start-up forscht mit Harvard und Google an Coronavirus-Arzneimittel

    Rund zwei Milliarden mögliche Wirkstoffe werden im weltweit größten computerbasierten „Screening-Projekt“ getestet. Die steirische Forschung erregt anlässlich des Coronavirus erneut internationales Aufsehen: Das Biotech Start-up Innophore, die Universität Graz und das acib, Austrian Centre ... mehr

    Lichtaktive Mikroalgen als Bio-Katalysatoren

    Ein blaugrüner Algenteppich kann das sommerliche Badevergnügen am See wörtlich „trüben“: Ursache sind einige Stämme von photosynthetisch aktiven Mikroalgen, auch Cyanobakterien genannt. Andere Stämme von Cyanobakterien, welche für den Menschen harmlos sind, haben ein großes Potential für bi ... mehr

    Keimkiller: Forscher finden in Körpersubstanz Wirkstoff gegen resistente Bakterien

    Jährlich sterben laut WHO ca. 25.000 Menschen in der EU an Infektionen durch resistente Bakterien, die sie sich in einer Gesundheitseinrichtung zugezogen haben. Im Kampf gegen Antibiotika-Resistenzen ist es Wissenschafter der Uni Graz in Kooperation mit internationalen Kollegen gelungen, ei ... mehr

  • q&more Artikel

    Lipidomics – der neue Stern am „OMICS“-Himmel

    Vor allem technologische und analytische Fortschritte bringen die Forschung voran. Dies gilt im biomedizinischen Bereich insbesondere für das Gebiet der Lipidforschung, das jahrzehntelang durch das Fehlen geeigneter Analysemethoden zur Untersuchung der enormen Komplexität von Lipiden im men ... mehr

  • Autoren

    Prof. Dr. Sepp D. Kohlwein

    Sepp D. Kohlwein, Jahrgang 1954, studierte Technische Chemie an der Technischen Universität Graz und promovierte dort 1982 am Institut für Biochemie zum Dr. techn. Bis 2001 war dort als assoziierter Professor tätig. Nach mehreren Forschungsaufenthalten am Albert Einstein College of Medicine ... mehr

Mehr über Fonds zur Förderung der wissenschaftlichen Forschung

  • News

    Viren-Killer in alten Heilpflanzen aufspüren

    Viele Organismen müssen sich gegen Fressfeinde, Krankheiten oder Schädlinge wehren. Mit ihren Stoffwechselprodukten bestücken sie ein chemisches Arsenal, das seit Menschengedenken in der Heilkunde verwendet wird. Mit modernen Methoden durchforstet ein Team um Judith Rollinger überliefertes ... mehr

    Ordnung und Wissen in die Datenflut bringen

    Eine Forschungsgruppe von der Fachhochschule St. Pölten hat im Rahmen eines vom Wissenschaftsfonds FWF finanzierten Projekts eine vielseitig einsetzbare Umgebung zur Datenvisualisierung entwickelt, in der auf einfache Weise Expertenwissen integriert werden kann. Die Aufbereitung großer Date ... mehr

    Jagd auf Fäkal-Bakterien in Wasser

    Der Mikrobiologe Andreas Farnleitner untersucht in einem vom Wissenschaftsfonds FWF finanzierten Projekt neue Methoden zur Analyse der Fäkalbelastungen von Wasser. Mit DNA-Analytik soll sich künftig der Ursprung der Fäkalien umfassend und einfach feststellen lassen. 2015 formulierten die Ve ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: