07.05.2018 - Ruprecht-Karls-Universität Heidelberg

Motor und Energiespeicher aus einem Guss

Physiker erfinden das Rad neu mithilfe einer Polymerfaser

Einen Motor und Energiespeicher zu bauen, der lediglich aus einer Komponente besteht, ist Physikern und Materialwissenschaftlern der Universitäten Heidelberg und Strasbourg (Frankreich) gelungen. Dafür nutzten sie eine elastische Polymerfaser, die zu einem Ring geformt und mithilfe einer äußeren Energiezufuhr zum Rotieren gebracht wurde. Von diesem Mechanismus erhoffen sich die Wissenschaftler neue Impulse zur Entwicklung intelligenter Werkstoffe mit fest definierten Funktionen.

„Unser Ansatz ist minimalistisch. Wir setzen nicht auf komplexe High-Tech-Materialien, sondern fragen uns, auf welche Weise die Geometrie und Topologie eines Materialstücks eine intelligente Funktion, etwa eine Drehbewegung, verursachen kann. So ist unser ‘wheel within’ entstanden“, betont Dr. Falko Ziebert vom Institut für Theoretische Physik der Universität Heidelberg, der gemeinsam mit Dr. Igor Kulić vom Institut Charles Sadron der Universität Strasbourg die Forschungsarbeiten geleitet hat. Im Gegensatz zum klassischen starren Rad, das um eine feste Achse läuft, bildet sich bei diesem „eingebetteten Rad“ eine elastische Verformungswelle aus, die sich im Material bewegt. „Der Antrieb erfolgt durch einfaches Heizen, das eine thermische Ausdehnung des Materials bewirkt, ganz ähnlich wie bei der thermischen Konvektionsströmung in unserer Atmosphäre, die Wetter und Klima mitbestimmt. Das Drehmoment kommt dabei durch die Wechselwirkung dieser thermischen Deformation mit der vorgegebenen Deformation der Ringgeometrie zustande“, erläutert Dr. Ziebert.

Mit dem „wheel within“ haben die Wissenschaftler ein sehr einfaches Prinzip entdeckt, um polymere Materialien, wie etwa einen Nylonfaden oder ein Gummiband, spontan in Bewegung zu setzen. Es bildet die Grundlage für weiterführende Forschungen. „Derzeit spielen wir noch mit verschiedenen Geometrien, Materialien und anderen Formen des Energieflusses durch das System“, sagt Dr. Kulić. Eine Vision ist dabei die Entwicklung neuer technischer Geräte mit robusten, selbst-bewegten Elementen, beispielsweise in Form künstlicher Muskeln. An den Forschungsarbeiten waren auch Forscher der Eidgenössischen Technischen Hochschule Zürich (Schweiz) beteiligt.

  • A. Baumann, A. Sánchez-Ferrer, L. Jacomine, P. Martinoty, V. Le Houerou, F. Ziebert, Igor M. Kulić; "Motorizing fibres with geometric zero-energy modes"; Nature Materials (published online on 30 April 2018)

Fakten, Hintergründe, Dossiers

  • thermische Ausdehnung
  • Polymerfasern

Mehr über Ruprecht-Karls-Universität Heidelberg

  • News

    Auffahrunfall auf der „Ribosomen-Autobahn“

    Als molekulare Maschine, die in den Zellen aller Organismen vorkommt, ist das Ribosom für die Herstellung neuer Proteine zuständig. Hierfür liest es auf einem Botenmolekül – der messenger RNA (mRNA) – den Bauplan für ein bestimmtes Protein ab und setzt diese Informationen anschließend in ne ... mehr

    Silizium mit zweidimensionaler Struktur

    Das Halbmetall Silizium tritt in seiner natürlichen Form mit vier Bindungen zu anderen Elementen auf und hat in seiner dreidimensionalen Struktur die Form eines Tetraeders. Ein zweidimensionales Pendant – geometrisch gesehen ein Quadrat – zu synthetisieren und zu charakterisieren, schien la ... mehr

    Optisch aktive Defekte verbessern Kohlenstoffnanoröhrchen

    Mit bewusst erzeugten strukturellen „Fehlstellen“ oder Defekten lassen sich die Eigenschaften von kohlenstoffbasierten Nanomaterialien verändern und verbessern. Dabei stellt es jedoch eine besondere Herausforderung dar, die Art und Anzahl der Defekte zu kontrollieren. Für Kohlenstoffnanoröh ... mehr

Mehr über Université de Strasbourg

  • News

    Nützliche „Fake“-Peptide

    Einige nützliche Medikamente bestehen aus Peptiden, die gezielt an bestimmte Zellproteine binden. Um solche Wirkstoffe wirksamer und stabiler zu machen, haben Wissenschaftler jetzt eine Möglichkeit gefunden, ganze Abschnitte des Peptids mit Ureido-(Harnstoff-)Einheiten zu ersetzen. Solche O ... mehr

  • q&more Artikel

    Ein Licht für die Zeit, eine Zeit für das Licht

    Wie wir wissen, sind unsere Augen das Sinnesorgan, mit dem wir die Welt um uns herum sehen können. Licht dringt durch die Pupille ins Auge ein und trifft auf die im hinteren Bereich liegende, lichtempfindliche Retina. Das löst einen biochemischen und physiologischen Prozess aus, der uns als ... mehr

  • Autoren

    Dr. David Hicks

    David Hicks, geb. 1956, studierte Zoologie an der Universität von Bristol, U.K., und promovierte in London im Fach Entwicklungsneuropsychologie (1978–81). Im Anschluss verbrachte er einen Postdoc-Aufenthalt an der biochemischen Fakultät der Universität von British Columbia in Vancouver, Kan ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: