q&more
Meine Merkliste
my.chemie.de  
Login  

News

Preiswertere, weniger toxische und recycelbare Lichtsensoren zur Wasserstoffherstellung

© Damien Jouvenot, Département de chimie moléculaire (CNRS/Université Grenoble Alpes)

Wasserstofferzeugung aus Sonnenenergie

23.04.2018: Die Nachahmung der Photosynthese von Pflanzen zur Umwandlung von stabilen und reichlich vorhandenen Molekülen wie H2O und CO2 in energieeffiziente Kraftstoffe (Wasserstoff) oder chemische Produkte für die Industrie zählt heute zu den größten Herausforderungen der Forschung. Der Einsatz der künstlichen Photosynthese in einer Lösung bleibt jedoch bislang aufgrund der Verwendung (zum Einfangen des Sonnenlichts) teurer und giftiger Metallverbindungen begrenzt.

Forscher des CNRS (französisches Zentrum für wissenschaftliche Forschung), der CEA (französische Behörde für Atomenergie und alternative Energien) und der Universität Grenoble Alpes haben nun eine effiziente Alternative entwickelt: halbleitende Nanokristalle (sogenannte Quantum Dots - Quantenpunkte) auf Kupfer-, Indium- und Schwefelbasis (preiswertere und weniger toxische Metalle).

Bei der künstlichen Photosynthese absorbieren die Chromophoren (auch: Photosensibilisatoren) die Lichtenergie und leiten die Elektronen an den Katalysator weiter, der die chemische Reaktion auslöst. Obwohl in den letzten Jahren zahlreiche Fortschritte bei der Entwicklung von edelmetallfreien Katalysatoren erzielt wurden, basieren die meisten Photosensibilisatoren noch immer auf molekularen Verbindungen auf der Basis seltener und kostspieliger Metalle, wie Ruthenium und Iridium, oder auf halbleitenden anorganischen Materialien, die das giftige Metall Kadmium enthalten.

Durch die Bündelung ihrer Kenntnisse in der Werkstofftechnik (Halbleiter) und der Photokatalyse gelang den Forschern zum ersten Mal die effiziente Herstellung von molekularem Wasserstoff. Sie verbanden zu diesem Zweck halbleitende anorganische Nanokristalle (Quantenpunkte) mit einem Kern aus Kupfer- und Indiumsulfid, geschützt durch eine Zink-/Schwefelhülle, mit einem molekularen Katalysator auf Kobaltbasis. Dieses „Hybrid“-System verbindet die exzellenten Eigenschaften zur Absorption sichtbaren Lichts und die Stabilität von anorganischen Halbleitern mit der Effizienz molekularer Katalysatoren. Kommt es zu einer Überschussproduktion von Vitamin-C (dem Elektronenlieferanten für das System) bewirkt dies eine bemerkenswerte katalytische Aktivität im Wasser – das bislang beste Ergebnis seit der Verwendung cadmiumfreier Quantenpunkte. Die Leistungen dieses Systems liegen dank der großen Stabilität der anorganischen Materialien (die ohne größeren Aktivitätsverlust mehrfach recycelt werden können) weit über denen mit rutheniumbasierten Photosensibilisatoren.

Diese Ergebnisse zeigen das große Potential solcher Hybrid-Systeme zur Herstellung von Wasserstoff aus Sonnenenergie.

Originalveröffentlichung:
"Cadmium-Free CuInS2/ZnS Quantum Dots as Efficient and Robust Photosensitizers in combination with a Molecular Catalyst for Visible Light-Driven H2 Production in Water"; M. Sandroni, R. Gueret, K. D. Wegner, P. Reiss, J. Fortage, D. Aldakov, and M.-N. Collomb; Energy & Environmental Science; 10 April 2018.

Fakten, Hintergründe, Dossiers

  • Nanokristalle
  • Quantenpunkte
  • Wasserstoffherstellung
  • Quantum Dots

Mehr über Französische Botschaft

  • News

    Verfahren zur Beschleunigung der Bewertung von Wirkstoff-Kandidaten

    Forscher der CEA haben gemeinsam mit Forschern des INSA Toulouse, des CNRS, und der Universität Paul Sabatier (Toulouse) ein Markierungsverfahren zur Beschleunigung der in-vivo-Studien von Wirkstoff-Kandidaten entwickelt. Derzeit werden weniger als 10% der Wirkstoff-Kandidaten, die in die ... mehr

    Neuartige Wasserstoffspeicherung

    Die durch Kompression von N2/H2-Gemischen erhaltenen NHx-Verbindungen sind bemerkenswert und ermöglichen die Speicherung von Wasserstoff in einer Stickstoff-Käfigstruktur. Den Forschern der französischen Behörde für Atomenergie und alternative Energien CEA, des französisches Zentrums für wi ... mehr

Mehr über Centre National de la Recherche Scientifique

  • News

    Auf dem Weg zur künstlichen Zelle

    Zellen, die sich im Reagenzglas bilden, sollen große Fragen der Biologie beantworten: Was ist die Minimalausstattung für eine lebende Zelle? Und wie hat das Leben auf der Erde begonnen? Den Vorläufer einer künstlichen Zelle präsentieren nun Forscher des Max-Planck-Instituts für Dynamik komp ... mehr

    Verfahren zur Beschleunigung der Bewertung von Wirkstoff-Kandidaten

    Forscher der CEA haben gemeinsam mit Forschern des INSA Toulouse, des CNRS, und der Universität Paul Sabatier (Toulouse) ein Markierungsverfahren zur Beschleunigung der in-vivo-Studien von Wirkstoff-Kandidaten entwickelt. Derzeit werden weniger als 10% der Wirkstoff-Kandidaten, die in die ... mehr

    Neuartige Wasserstoffspeicherung

    Die durch Kompression von N2/H2-Gemischen erhaltenen NHx-Verbindungen sind bemerkenswert und ermöglichen die Speicherung von Wasserstoff in einer Stickstoff-Käfigstruktur. Den Forschern der französischen Behörde für Atomenergie und alternative Energien CEA, des französisches Zentrums für wi ... mehr

Mehr über CEA

  • News

    Geheimnis um Langlebigkeit von Bäumen enthüllt

    Ein internationales Konsortium unter der Leitung des französischen Agrarforschungsinstituts INRA und des französischen Kommissariats für Atomenergie und Alternative Energien CEA hat das Genom der Stieleiche sequenziert. Die kürzlich in Nature Plants veröffentlichte Arbeit, an der auch drei ... mehr

    Verfahren zur Beschleunigung der Bewertung von Wirkstoff-Kandidaten

    Forscher der CEA haben gemeinsam mit Forschern des INSA Toulouse, des CNRS, und der Universität Paul Sabatier (Toulouse) ein Markierungsverfahren zur Beschleunigung der in-vivo-Studien von Wirkstoff-Kandidaten entwickelt. Derzeit werden weniger als 10% der Wirkstoff-Kandidaten, die in die ... mehr

    Neuartige Wasserstoffspeicherung

    Die durch Kompression von N2/H2-Gemischen erhaltenen NHx-Verbindungen sind bemerkenswert und ermöglichen die Speicherung von Wasserstoff in einer Stickstoff-Käfigstruktur. Den Forschern der französischen Behörde für Atomenergie und alternative Energien CEA, des französisches Zentrums für wi ... mehr

  • Autoren

    Céline Gesset

    Jg. 1979, absolvierte die Télécom Sud-Paris in 2004 mit einer Spezialisierung in Optik und Hochfrequenzsensoren. Sie kam 2005 zum CEA und entwickelte ein neues Design für Sensoren. Seit 2008 ist sie Teammitglied am Diamond Sensors Laboratory, wo ihre Haupttätigkeit die Erforschung von Nanod ... mehr

    Dr. Jacques de Sanoit

    Jg. 1955, war Forscher am CEA und besitzt 35 Jahre Erfahrung. Nach 10 Jahren Forschung und Entwicklung im Bereich der Wiederaufbereitung vom atomaren Brennstoffen und der radiochemischen Trennung von minoren Aktiniden verbrachte er 15 Jahre am Henri Becquerel National Laboratory (CEA-LIST), ... mehr

    Prof. Dr. Jean-Charles Arnault

    Jg. 1966, ist Forschungsdirektor bei der Kommission für Atomenergie und alternative Energien (CEA). Nach Erlangung des Dokto­r­grades in 1993 war er Assistenzprofessor an der Universität Straßburg, bis er 2007 dem Diamond Sensors Laboratory am CEA beitrat. Sein ursprüngliches Fachgebiet war ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.