q&more
Meine Merkliste
my.chemie.de  
Login  

News

Ultrakurze Laserpulse machen Treibhausgas reaktionsfreudig

Spektrometer zeigt Moleküle bei der Arbeit

(c) Foto: Barbara Frommann/Uni Bonn

Am Laser und Infrarotspektrometer: Prof. Dr. Peter Vöhringer (links) und Steffen Straub im Institut für Physikalische und Theoretische Chemie der Universität Bonn.

20.03.2018: Es ist ein lang gehegter Traum: Das träge Treibhausgas Kohlendioxid aus der Atmosphäre entfernen und es als Grundstoff für die chemische Industrie nutzen. Damit könnten gleich zwei große Probleme auf einmal angegangen werden, indem der Klimawandel eingedämmt und die Abhängigkeit von Erdöl reduziert wird. Physikochemiker der Universität Bonn sind im Begriff, zu dieser Vision wesentliche Beiträge zu leisten. Sie haben einen neuen Weg entdeckt, wie mit Hilfe von Laserpulsen eine sehr reaktionsfreudige Form des Kohlendioxids hergestellt werden kann.

Die Natur macht es dem Menschen tagtäglich vor, wie sich auf elegante Weise das Kohlendioxid aus der Luft binden und in einen dringend benötigten Rohstoff umwandeln lässt. Mit ihren grünen Blättern betreiben die Pflanzen bei Lichteinstrahlung Fotosynthese. Aus Kohlendioxid und Wasser entstehen mit Hilfe des Sonnenlichts Sauerstoff und der dringend benötigte Energie- und Baustofflieferant Zucker.

„Diesem Vorbild eifert der Mensch schon lange nach, um Kohlendioxid zum Beispiel auch für die chemische Industrie zu nutzen“, sagt Prof. Dr. Peter Vöhringer vom Institut für Physikalische und Theoretische Chemie der Universität Bonn. Was das Konzept schwer umsetzbar macht ist, dass sich das Kohlendioxid kaum dazu bewegen lässt, neue Partnerschaften mit anderen Molekülen einzugehen.

Mit seinem Team hat der Physikochemiker nun einen neuen Weg entdeckt, wie das reaktionsträge und schwer zu bindende Treibhausgas in einer sehr reaktionsfreudigen Variante hergestellt werden kann. Die Forscher nutzten einen sogenannten Eisenkomplex: Im Zentrum befindet sich ein positiv geladenes Eisenatom, an dem mehrfach die Bestandteile des Kohlendioxids bereits gebunden sind. Die Wissenschaftler schossen ultrakurze Laserpulse aus ultraviolettem Licht auf diesen Eisenkomplex, wodurch bestimmte Bindungen aufgebrochen wurden. Als Produkt entstand ein sogenanntes Kohlendioxid-Radikal, das auch mit einer gewissen Radikalität neue Verbindungen eingeht.

Solche Radikale verfügen in ihrer äußeren Hülle über ein einzelnes Elektron, das dringend mit einem anderen Molekül oder Atom eine dauerhafte Bindung eingehen möchte. „Es ist dieses ungepaarte Elektron, welches unser reaktionsfreudiges, an das zentrale Eisenatom gebundene Radikal-Anion von dem reaktionsträgen Kohlendioxid unterscheidet und für chemische Prozesse so vielversprechend macht“, erläutert Erstautor Steffen Straub aus Vöhringers Team. Die Radikale könnten wiederum die Grundbausteine für interessante chemische Produkte darstellen, wie zum Beispiel Methanol als Treibstoff oder Harnstoff für chemische Synthesen sowie Salicylsäure als Schmerzmedikament.

Spektrometer zeigt Moleküle bei der Arbeit

Mit ihrem Laser und Infrarotspektrometer, einer großen Apparatur im Keller des Instituts, schauen die Wissenschaftler den Molekülen quasi bei der Arbeit zu. Sie können damit die Verbindungen aus unterschiedlichen Atomen anhand eines „Fingerabdrucks“ identifizieren, indem das Spektrometer die charakteristischen Schwingungen der Moleküle misst. „Bei der Bildung des Kohlendioxid-Radikals innerhalb des Eisen-Komplexes verändern sich die Bindungen zwischen den Atomen, und dadurch verringert sich die Frequenz der für das Kohlendioxid typischen Schwingung“, erklärt Straub.

Mit kriminalistischem Spürsinn wiesen die Wissenschaftler nach, dass durch die Laserpulse tatsächlich das reaktionsfreudige Kohlendioxid-Radikal entsteht. Zunächst simulierte das Team am Rechner die Schwingungsspektren der Moleküle, anschließend verglich es die Berechnungen mit den Messungen - und in der Tat: Simulation und Experiment stimmten sehr gut überein. Wie in einem „Molekülkino“ schoss das Spektrometer „Schnappschüsse“ in der unvorstellbaren zeitlichen Auflösung von Millionstel Milliardstel Sekunden. Anhand der Spektren - die den Einzelbildern eines Films entsprechen - lässt sich deshalb gleichsam in Zeitlupe nachweisen, wie sich der Eisenkomplex unter Laserbeschuss über mehrere Stufen verformt, die Bindungen aufbrechen und schließlich das Radikal entsteht.

„Unsere Ergebnisse haben das Potenzial, die Vorstellungen darüber, wie man das Treibhausgas Kohlendioxid der Atmosphäre entziehen und daraus wichtige chemische Produkte herstellen könnte, grundlegend zu verändern“, sagt Vöhringer. Allerdings müssten für einen großtechnischen Einsatz noch geeignete Katalysatoren entwickelt werden, weil für eine Umwandlung im großen Maßstab Laserpulse nicht effizient seien. „Unsere Ergebnisse liefern jedoch Anhaltspunkte dafür, wie ein solcher Katalysator designt werden müsste“, ergänzt der Wissenschaftler. Die aktuelle Studie sei übergreifend in den wichtigen Schlüsselforschungsbereichen zur Nachhaltigkeit und zugleich zur Materieforschung der Universität Bonn angesiedelt.

Originalveröffentlichung:
Steffen Straub, Paul Brünker, Jörg Lindner, and Peter Vöhringer; "An Iron Complex with a Bent, O-Coordinated CO2-Ligand Discovered by Femtosecond Mid-Infrared Spectroscopy"; Angewandte Chemie; 2018

Mehr über Universität Bonn

  • News

    COVID-19 hat etliche Gesichter

    Die vom Coronavirus SARS-CoV-2 verursachte Erkrankung COVID-19 umfasst nach aktuellen Untersuchungen mindestens fünf verschiedene Varianten. Diese unterscheiden sich darin, wie das Immunsystem auf die Infektion reagiert. Forschende des Deutschen Zentrums für Neurodegenerative Erkrankungen ( ... mehr

    Maßgeschneiderte menschliche Stammzellen

    Induzierte pluripotente Stammzellen (iPS) haben das Potenzial, sich in die unterschiedlichsten Zelltypen und Gewebe zu verwandeln. Die „Kochrezepte“ für diese Umwandlung sind jedoch häufig kompliziert und schwer umsetzbar. Forscher des Zentrums für Regenerative Therapien Dresden (CRTD) der ... mehr

    Erbanlage bewahrt Immunsystem vor Alterung

    Eine Erbanlage, die bei der Entwicklung des Herzens im entstehenden Kind eine Rolle spielt, scheint auch im menschlichen Immunsystem eine Schlüsselfunktion zu übernehmen. Das belegt eine neue Studie unter Federführung der Universität Bonn. Wenn das Gen nicht aktiv genug ist, kommt es demnac ... mehr

  • q&more Artikel

    Goldplasma macht unsichtbare Strukturen sichtbar

    Die Mikro-Computertomographie (μCT) ist in den letzten Jahren zu einer Standardmethode in vielen medizinischen, wissenschaftlichen und industriellen Bereichen geworden. Das bildgebende Verfahren ermöglicht die zerstörungsfreie, dreidimensionale Abbildung verschiedenster Strukturen. mehr

  • Autoren

    Dr. Markus Lambertz

    Markus Lambertz, Jahrgang 1984, studierte Biologie mit den Schwerpunkten Zoologie, Paläontologie und Geologie in Bonn (Diplom 2010). Nach einem mehrmonatigen Forschungsaufenthalt in Ribeirão Preto (Brasilien) nahm er sein Promotionsstudium in Bonn auf (Promotion 2015). Im Anschluss war er a ... mehr

    Prof. Dr. Jürgen Bajorath

    Jürgen Bajorath hat Biochemie studiert und an der Freien Universität Berlin promoviert. Nach seinem Postdoc-Aufenthalt bei Biosym Technologies in San Diego war er für mehr als 10 Jahre in der US-amerikanischen Pharmaforschung tätig und hatte ebenfalls akademische Posi­tionen, zuletzt war er ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.