q&more
Meine Merkliste
my.chemie.de  
Login  

News

Gene ins Visier nehmen

Proteine die für Pflanzenentwicklung, DNA-Reparatur und Gen-Targeting wichtig sind

Sigrid Gombert

Moospflanzen auf einer Petrischale.

08.03.2018: Alle lebenden Zellen haben Mechanismen entwickelt, um ihre DNA gegen Beschädigungen zu schützen – ob verursacht bei der Zellteilung, durch ultraviolettes Licht oder Chemikalien. Biologinnen und Biologen um Prof. Dr. Ralf Reski von der Universität Freiburg haben nun herausgefunden, dass Proteine aus der RecQ-Familie im Moos Physcomitrella patens wichtige Funktionen für die Moosentwicklung, sowie die Reparatur und zielgerichtete Veränderung der DNA erfüllen. Die Ergebnisse, die das Team im Fachjournal „Plant Cell“ veröffentlicht hat, könnten den Schlüssel für eine präzisere Genom-Editierung auch bei Nutzpflanzen liefern. Das Quedlinburger Julius-Kühn-Institut JKI, Bundesforschungsinstitut für Kulturpflanzen und das Zentrum des Nationalen Instituts für Agrarforschung INRA in Versailles-Grignon/Frankreich haben zu der Studie beigetragen.

Proteine aus der RecQ-Familie kommen in Bakterien, Pilzen, Tieren und Pflanzen vor. Am besten ist ihre Funktion im Menschen erforscht, da Mutationen in den Genen, die die Baupläne für diese Proteine liefern, zu Syndromen wie Bloom, Werner oder Rothmund-Thomson sowie zu Krebserkrankungen führen. Dagegen ist ihre Rolle in Pflanzen bislang noch weitgehend unklar. Das Forschungsteam hat nun entdeckt, dass sich zwei wichtige Modellorganismen für die Genforschung – die Blütenpflanze Arabidopsis thaliana und das Moos Physcomitrella patens – in ihren RecQ4- und RecQ6-Genen deutlich voneinander unterscheiden. Indem die Wissenschaftlerinnen und Wissenschaftler verschiedene gentechnisch veränderte Pflanzen erzeugten, fanden sie heraus, dass RecQ4 für die reguläre Entwicklung der Moospflanze und die DNA-Reparatur wichtig ist, wohingegen RecQ6, das in Arabidopsis überhaupt nicht vorkommt, vor allem die gezielte Veränderung von Genen befördert.

1998 publizierte Reskis Forschungsgruppe als erste über Gen-Targeting bei Pflanzen, dem zielgerichteten Verändern von Genen. Seitdem dient die Methode dazu, grundlegende Fragen der Biologie zu beantworten und so genannte Knockout-Moose mit spezifisch ausgeschalteten Genen für biotechnologische Anwendungen herzustellen. „Seit wir vor 20 Jahren unsere Arbeit über die ersten Knockout-Moose veröffentlicht haben, habe ich mich dafür interessiert, warum Physcomitrella um ein Vielfaches effizienter im Editieren von Genen ist als jede andere Pflanze“, erklärt Reski. Weltweit haben mehrere Forschungsgruppen versucht, eine Antwort auf diese Frage zu finden – bislang vergeblich. Die Kooperation mit den Expertinnen und Experten aus Quedlinburg und Versailles hat schließlich zum Erfolg geführt. „Wir wollen nun das RecQ6-Gen aus dem Moos in Blütenpflanzen übertragen und untersuchen, ob es dort die Veränderung von Genen ebenfalls befördert. Damit könnte es künftig möglich sein, Nutzpflanzen mit herausragender Präzision zu modifizieren“, sagt Reski.

Die Freiburger Biologinnen und Biologen sind auf die Moosforschung spezialisiert und haben dazu beigetragen, Moose zu weltweit genutzten Modellorganismen für Biologie und Biotechnologie zu entwickeln. Ralf Reski ist Inhaber der Professur für Pflanzenbiotechnologie an der Albert-Ludwigs-Universität Freiburg. Der Biologe ist Mitglied des Exzellenzclusters BIOSS Centre for Biological Signalling Studies und war Senior Fellow am Freiburg Institute for Advanced Studies (FRIAS) sowie am französischen Pendant USIAS, dem Institute for Advanced Study der Université de Strasbourg.

Originalveröffentlichung:
Gertrud Wiedemann, Nico van Gessel, Fabian Köchl, Lisa Hunn, Katrin Schulze, Lina Maloukh, Fabien Nogué, Eva L. Decker, Frank Hartung, Ralf Reski; "RecQ helicases function in development, DNA-repair and gene targeting in Physcomitrella patens"; Plant Cell; 2018

Fakten, Hintergründe, Dossiers

  • Pflanzen
  • Proteine
  • Moose
  • Universität Freiburg
  • Physcomitrella patens
  • Modellorganismen
  • Zellteilung
  • Pflanzenbiotechnologie
  • Biotechnologie
  • Arabidopsis thaliana
  • Bakterien
  • Kulturpflanzen
  • UV-Licht
  • Zellen
  • Mutationen

Mehr über Uni Freiburg

  • News

    Eine Frage der Zeit: Wie das Immunsystem körpereigene von krankheitserregenden Molekülen unterscheidet

    Ein Team um die Freiburger Biologen Prof. Dr. Wolfgang Schamel und Prof. Dr. Wilfried Weber hat in einem Experiment die Dauer der Wechselwirkung eines Proteins mit T-Zellen, weißen Blutkörperchen, kontrolliert und damit gezeigt, wie das Immunsystem krankheitserregende von körpereigenen Mole ... mehr

    Verkehrskontrolle für Zellen

    Zellen im menschlichen Körper können sich unterschiedlich verhalten, abhängig von den mechanischen Eigenschaften des Gewebes, das sie umgibt. Dies gilt besonders für Immunzellen, die durch den Körper wandern, dabei auf Gewebe mit unterschiedlichen Eigenschaften treffen und darauf angemessen ... mehr

    Stammzellen regulieren ihr Schicksal, indem sie ihre Steifigkeit verändern

    Bei erwachsenen Menschen finden sich so genannte Mesenchymale Stammzellen (MSCs) hauptsächlich im Knochenmark. MSC spielen eine wichtige Rolle bei der Reparatur beschädigter Organe. Die Umwandlung einer einzelnen MSC in ein komplexes Gewebe wie Knorpel startet mit dem Zusammenschluss dieser ... mehr

  • q&more Artikel

    Modulare Biofabriken auf Zellebene

    Der „gebürtige Bioorganiker“ hatte sich bei seiner Vorliebe für komplexe Molekülarchitekturen nie die klassische Einteilung von synthetischen Polymeren und biologischen Makromolekülen zu eigen gemacht. Moleküle sind nun mal aus Atomen zusammengesetzt, die einen wie die anderen, warum da ein ... mehr

    Lesezeichen

    Aus einer pluripotenten Stammzelle kann sowohl eine Muskel- als auch eine Leberzelle entstehen, die trotz ihres unterschiedlichen Erscheinungsbildes genetisch identisch sind. Aus ein und demselben ­Genotyp können also verschiedene Phänotypen entstehen – die Epigenetik macht es möglich! Sie ... mehr

  • Autoren

    Dr. Stefan Schiller

    Stefan M. Schiller, Jg. 1971, studierte Chemie mit Schwerpunkt Makromolekulare und Biochemie in Gießen, Mainz und an der University of Massachusetts. Er promovierte bis 2003 am Max-Planck-Institut für Polymerforschung in Mainz über biomimetische Membransysteme, es folgten Forschungsaufentha ... mehr

    Julia M. Wagner

    Julia M. Wagner studierte Pharmazie in Freiburg (Approbation 2008). Seit 2008 ist sie Doktorandin und wissenschaftliche Mitarbeiterin im Arbeitskreis von Professor Dr. M. Jung. In ihrer Forschung beschäftigt sie sich mit der zellulären Wirkung von Histon-Desacetylase-Inhibitoren. mehr

    Prof. Dr. Manfred Jung

    Manfred Jung hat an der Universität Marburg Pharmazie studiert (Approbation 1990) und wurde dort in pharmazeutischer Chemie bei W. Hanefeld promoviert. Nach einem Postdoktorat an der Universität Ottawa, Kanada begann er 1994 am Institut für Pharmazeutische Chemie der Universität Münster mit ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:

 

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.