q&more
Meine Merkliste
my.chemie.de  
Login  

News

Erste integrierte Schaltkreise aus Plastik

Wissenschaftlicher Durchbruch

© MPI für Polymerforschung

Die Wissenschaftler stellten einen IC aus einer monomolekularen Schicht eines Halbleiterpolymers her.

20.02.2018: Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind binäre Schalter, die für die logische Verknüpfung in digitalen Schaltungen verwendet werden; sie sind die Bausteine eines integrierten Schaltkreises (IC).

Das grundlegende Konzept der selbstanordnenden Elektronik gibt es schon seit 1976. Seit Jahrzehnten besteht die Herausforderung darin, eine selbstanordnende Monoschicht eines Halbleiterpolymers in einem Transistor zu bilden. "Die Idee ist, dass alle Komponenten eines Transistors sich in einer hierarchischen Ordnung zusammenfügen und anordnen", sagte Kamal Asadi, Leiter der Humboldt-Forschungsgruppe am MPI für Polymerforschung. Die Monoschicht ist hoch organisiert und kann elektrische Ladungsträger gut leiten. Das Forschungsteam benutzte hierfür die Lösung eines Polymers. Durch das kontrollierte Eintauchen des Transistor-Substrates in die Lösung konnten die Forscher eine vollständige Polymer-Monoschicht wachsen lassen und erzeugen.

Wissenschaftlicher Durchbruch

Um diesen wissenschaftlichen Durchbruch zu erzielen, haben die Forscher das Halbleiterpolymer absichtlich in einem organischen Lösungsmittel aufgelöst, das das Polymer allerdings nicht vollständig auflösen sollte. Auf diese Weise konnten die Wissenschaftler den ersten selbstanordnenden Polymer-Feld-Effekt-Transistor (PoM-FET) herstellen. Dennoch macht ein PoM-FET noch keinen funktionellen integrierten Schaltkreis aus. Deshalb hat das Forschungsteam hunderte von PoM-FETs zusammengefasst und diese gleichzeitig betrieben, um einen 15-Bit-Code-Generator zu erstellen. Dieser Generator ist ein integrierter Schaltkreis, der eine Spannung in einen digitalen Code umwandelt. Dieses wissenschaftliche Ergebnis ist ein Meilenstein für die Anwendungen in der flexiblen Elektronik und in schnell reagierenden Sensoren.

Internationale wissenschaftliche Zusammenarbeit

Diese wissenschaftliche Arbeit war eine Zusammenarbeit von mehreren internationalen Forschungsgruppen weltweit. Die Halbleiterpolymere wurde von der Gruppe von Professor He Yan an der Hong Kong University of Science and Technology, Hongkong synthetisiert. Die Polymermonoschichten wurden von der Gruppe von Professor Harald Ade an der North Carolina State University, USA, und von der Gruppe von Professor Wojtek Pisula an der Technischen Universität in Lodz, Polen, analysiert. Die PoM-FETs und die integrierten Schaltkreise wurden am MPI für Polymerforschung, Mainz hergestellt. Der Postdoktorand Dr. Mengmeng Li führte die Forschungsarbeiten durch, die von Dr. Kamal Asadi gemeinsam mit Prof. Wojtek Pisula geleitet wurden.

Originalveröffentlichung:
Mengmeng Li, Deepthi Kamath Mangalore, Jingbo Zhao, Joshua H. Carpenter, Hongping Yan, Harald Ade, He Yan, Klaus Müllen, Paul W. M. Blom, Wojciech Pisula, Dago M. de Leeuw & Kamal Asadi; "Integrated circuits based on conjugated polymer monolayer"; Nature Communications; Volume 9, Article number: 451 (2018)

Fakten, Hintergründe, Dossiers

  • elektronische Schaltkreise
  • Polymere
  • Transistoren
  • Elektronik
  • Feldeffekttransistoren

Mehr über MPI für Polymerforschung

  • News

    Nano-3D-Drucken für medizinische Anwendungen

    Personalisierte Wirkstoffabgabe oder nanometergroße robotische Systeme könnten ein Schlüsselkonzept für zukünftige medizinische Anwendungen darstellen. In diesem Zusammenhang haben Wissenschaftler um David Ng (Arbeitskreis Prof. Tanja Weil) vom Max-Planck-Institut für Polymerforschung (MPI- ... mehr

    Rätsel um mit Licht angeregtes Graphen gelöst

    Das Kernstück vieler moderner Geräteanwendungen ist die Lichterkennung und -steuerung, wie sie beispielsweise in Smartphone-Kameras zum Einsatz kommt. Die Verwendung von Graphen als lichtempfindliches Material für Lichtsensoren kann gegenüber den gegenwärtig verwendeten Materialien erheblic ... mehr

    OLED: Ultradünnschicht erhöht die Effizienz

    Wissenschaftler am Max-Planck-Institut für Polymerforschung in Mainz haben ein unerwartetes Versuchsergebnis erhalten: Sie haben eine neue Methode entdeckt, um die Kontakte in OLEDs zu verbessern. Dieser neue Ansatz führt zu einer höheren Energieeffizienz und kann praktisch in jedem organis ... mehr

Mehr über Max-Planck-Gesellschaft

  • News

    Nano-3D-Drucken für medizinische Anwendungen

    Personalisierte Wirkstoffabgabe oder nanometergroße robotische Systeme könnten ein Schlüsselkonzept für zukünftige medizinische Anwendungen darstellen. In diesem Zusammenhang haben Wissenschaftler um David Ng (Arbeitskreis Prof. Tanja Weil) vom Max-Planck-Institut für Polymerforschung (MPI- ... mehr

    Gendefekte ohne Folgen

    Viele Krankheiten werden durch Gendefekte verursacht. Ihr Schweregrad kann jedoch zwischen einzelnen Patienten variieren, sodass auch milde Verlaufsformen auftreten können. Wissenschaftler des Max-Planck-Instituts für Herz- und Lungenforschung in Bad Nauheim haben nun einen molekularen Mech ... mehr

    Ein molekularer Schalter für das X-Chromosom

    Im Verlauf der Entwicklung müssen eine Vielzahl an Genen zu unterschiedlichen Zeitpunkten an- oder abgeschaltet werden. Eine besondere Herausforderung besteht, wenn in einer Zelle zwei Kopien des gleichen Gens unterschiedliche Aktivierungszustände einnehmen sollen, wie es zum Beispiel bei d ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:



Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.