12.02.2018 - Deutsches Elektronen-Synchroton DESY

Forscher beobachten wachsende Nanodrähte live

Röntgenuntersuchung zeigt erstmals genaue Details des selbstkatalysierten Wachstums

An DESYs Röntgenlichtquelle PETRA III haben Wissenschaftler das Wachstum winziger Drähte aus Galliumarsenid live verfolgt. Die Beobachtungen zeigen genaue Details der Wachstumsprozesse, die für Form und Kristallstruktur der kristallinen Nanodrähte verantwortlich sind. Diese Erkenntnisse bieten auch neue Ansätze, zukünftig Nanodrähte mit speziellen Eigenschaften für bestimmte Anwendungen maßzuschneidern. Die Forscher um Philipp Schroth von der Universität Siegen und dem Karlsruher Institut für Technologie (KIT) stellen ihre Arbeit im Fachblatt „Nano Letters“ vor. Galliumarsenid (GaAs) ist ein breit verwendeter Halbleiterwerkstoff, der beispielsweise in Infrarotfernbedienungen, in der Hochfrequenztechnik für Handys, für die Umwandlung von elektrischen Signalen in Licht für Glasfaserkabel und auch für Solarzellen in der Raumfahrt eingesetzt wird.

Für die Herstellung der Drähte nutzen die Wissenschaftler den sogenannten selbstkatalysierenden Vapour-Liquid-Solid-Prozess (VLS-Prozess). Dabei werden zuerst winzige flüssige Galliumtröpfchen auf einen rund 600 Grad Celsius heißen Siliziumkristall aufgebracht. Danach wird dieser Wafer mit gerichteten Strahlen aus Galliumatomen und Arsenmolekülen bedampft, die sich in den Galliumtröpfchen auflösen. Nach einer gewissen Zeit setzt das Kristallwachstum der Nanodrähte unterhalb der Tröpfchen ein, wobei die Tröpfchen Schritt für Schritt nach oben geschoben werden. Die Galliumtröpfchen wirken hierbei als Katalysator für das Längenwachstum der Drähte. „Dieser Prozess ist zwar recht etabliert, bisher lässt sich die Kristallstruktur so hergestellter Nanodrähte allerdings noch nicht gezielt steuern. Um dies zu erreichen, müssen erst die Details des Wachstums verstanden werden“, betont Ko-Autor Ludwig Feigl vom KIT.

Um den Wachstumsprozess live zu beobachten, installierte die Gruppe um Schroth eine mobile, speziell für Röntgenuntersuchungen entwickelte und vom Bundesministerium für Bildung und Forschung (BMBF) finanziell unterstützte Versuchskammer des KIT im brillanten Röntgenstrahl von DESYs Forschungslichtquelle PETRA III. Im Minutentakt machten die Forscher Röntgenaufnahmen an der Messstation P09, mit denen sich gleichzeitig die interne Struktur und der Durchmesser der wachsenden Nanodrähte bestimmen lassen. Ergänzend dazu vermaßen die Wissenschaftler die fertiggestellten Nanodrähte mit dem Rasterelektronenmikroskop des DESY NanoLabs. „Um solche komplexen Messungen überhaupt durchführen zu können, haben wir die Wachstumsbedingungen zuvor über einen Zeitraum von sechs Monaten am UHV Analysis Lab des KIT weitestgehend optimiert“, erklärt Ko-Autor Seyed Mohammad Mostafavi Kashani von der Universität Siegen.

In etwas mehr als vier Stunden wuchsen die Drähte auf eine Länge von rund 4000 Nanometern heran. Ein Nanometer (nm) ist ein millionstel Millimeter. Dabei wurden die Drähte allerdings nicht nur länger, sondern auch dicker: Ihr Durchmesser stieg von anfangs rund 20 nm auf bis zu 140 nm an der Spitze des Drahtes, womit sie immer noch rund 500 Mal dünner sind als ein menschliches Haar.

„Spannenderweise zeigten die elektronenmikroskopischen Abbildungen eine etwas andere Form der Nanodrähte“, sagt Ko-Autor Thomas Keller vom DESY NanoLab. Zwar waren die Drähte – in Übereinstimmung mit den Röntgendaten – oben dicker als unten an der Kontaktfläche zum Substrat. Allerdings war der im Elektronenmikroskop gemessene Durchmesser im unteren Teil des Drahts größer als mittels Röntgenstrahlung beobachtet.

„Wir haben herausgefunden, dass für das Wachstum der Nanodrähte nicht nur der VLS-Prozess verantwortlich ist, sondern auch eine zweite Komponente, die wir in diesem Experiment erstmals direkt beobachten und quantifizieren konnten“, erklärt Schroth. „Dieses sogenannte Seitenwand-Wachstum lässt die Drähte zusätzlich in die Breite wachsen.“ Unabhängig vom VLS-Prozess lagert sich aufgedampftes Material vor allem im unteren Teil des Nanodrahts direkt an den Seitenwänden an. Aus dem Vergleich der Röntgenmessung zu einem frühen Zeitpunkt des Wachstums mit der elektronenmikroskopischen Messung am Ende des Wachstums lässt sich dieser zusätzliche Beitrag bestimmen.

Außerdem werden im Laufe des Wachstumsprozesses die Galliumtröpfchen durch das fortwährende Aufdampfen von weiterem Gallium kontinuierlich größer. Damit verändert sich aber auch deren Form, welche die Forscher mit Hilfe von Wachstumsmodellen ableiten konnten. Das hat einen weitreichenden Effekt: „Mit der Tröpfchengröße ändert sich der Kontaktwinkel zwischen den Tröpfchen und der Oberfläche der Drähte. In bestimmten Fällen führt das dazu, dass der Draht plötzlich in einer anderen Kristallstruktur weiterwächst“, sagt Feigl. Während die feinen Drähte zunächst in einer hexagonalen, sogenannten Wurtzit-Struktur kristallisierten, änderte sich dieses Verhalten nach einiger Zeit, und die Drähte wuchsen in einer kubischen Zinkblende-Struktur weiter. Diese Änderung ist für Anwendungen wichtig, da die Struktur und die Form der Nanodrähte große Auswirkungen auf die Materialeigenschaften haben.

Mit diesen detaillierten Erkenntnissen lässt sich das Wachstum nicht nur besser verstehen, sie bieten auch Ansätze, zukünftig Nanodrähte mit speziellen Eigenschaften für bestimmte Anwendungen maßzuschneidern – etwa um den Wirkungsgrad einer Solarzelle oder eines Lasers zu erhöhen.

Fakten, Hintergründe, Dossiers

Mehr über Deutsches Elektronen-Synchrotron DESY

Mehr über KIT

  • News

    Maschinelles Lernen beschleunigt Materialsimulationen

    Erforschung, Entwicklung und Herstellung neuer Materialien hängen entscheidend von schnellen und zugleich genauen Simulationsmethoden ab. Maschinelles Lernen, bei dem Künstliche Intelligenz (KI) selbstständig neues Wissen erwirbt und anwendet, wird es künftig ermöglichen, komplexe Materials ... mehr

    Katalysatorforschung: Molekulare Sonden erfordern hochgenaue Rechnungen

    Katalysatoren machen viele Technologien überhaupt erst möglich. Um heterogene Katalysatoren weiter zu verbessern, bedarf es der Analyse der komplexen Prozesse an ihrer Oberfläche, wo sich die aktiven Zentren befinden. Forschende des Karlsruher Instituts für Technologie (KIT) haben mit Kolle ... mehr

    Nanostrukturen helfen, die Haftung von Krankenhauskeimen zu reduzieren

    Wissenschaftler der Universität des Saarlandes und des Karlsruher Instituts für Technologie haben gemeinsam herausgefunden, wie Bakterien auf – in mikroskopischen Maßstäben – rauen Oberflächen haften. Das Team aus den Disziplinen Physik, Mikrobiologie und Mathematik entdeckte, dass aus der ... mehr

  • q&more Artikel

    Analytische Quantifizierung von Gluten in Lebensmitteln

    Der Gesetzgebung zufolge dürfen Lebensmittel, die mit einem Glutenfrei-Symbol versehen sind, nicht mehr als 20 mg Gluten pro Kilogramm enthalten, was für Zöliakie-Betroffene aus gesundheitlichen Gründen lebenswichtig ist. mehr

    Bewertung der Lungentoxizität von Luftschadstoffen

    Die aktuellen Diskussionen zu Fahrverboten in europäischen Städten zeigen einerseits den hohen Stellenwert, den die Bevölkerung der Luftqualität zumisst, und andererseits den Mangel an Methoden, die von Luftschadstoffen ausgehende Beeinträchtigung der menschlichen Gesundheit direkt zu bewerten. mehr

    Biochemie in der Mikrowelle

    Die Entwicklung neuer Pharmazeutika beruht auf dem zunehmenden Verständnis intrazellulärer Vorgänge. Insbesondere durch die Erforschung von Ligand-Rezeptor-Wechselwirkungen können Wirkstoffe ­besser angepasst werden. Um Medikamente an ihren Wirkungsort ­zu bringen, werden sog. „Carrier“-Mol ... mehr

  • Autoren

    Prof. Dr. Katharina Scherf

    Katharina Scherf, Jahrgang 1985, studierte Lebensmittelchemie an der Technischen Universität München (TUM). Ihre Promotion und Habilitation erwarb sie ebenfalls an der TUM und war als leitende Wissenschaftlerin am Leibniz-Institut für Lebensmittel-Systembiologie an der TUM tätig. 2019 wurde ... mehr

    Majlinda Xhaferaj

    Majlinda Xhaferaj, Jahrgang 1992, schloss ihr Lebensmittelchemiestudium im Jahr 2018 am Karlsruher Institut für Technologie (KIT) ab. Seit 2019 ist sie Doktorandin in der Abteilung für Bioaktive und Funktionelle Lebensmittelinhaltsstoffe mit dem Schwerpunkt der Glutenanalytik zur Verbesseru ... mehr

    Dipl. Ing. Sonja Mülhopt

    Sonja Mülhopt erwarb 2000 ihr Diplom für Maschinenbau an der Berufsakademie (heute DHBW) Mannheim. Die begleitende Ausbildung durchlief sie am Forschungszentrum Karlsruhe, dem heutigen Karlsruher Institut für Technologie (KIT). 2014 erhielt sie den Master of Science für Chemieingenieurwesen ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: