08.01.2018 - Friedrich-Schiller-Universität Jena

Mit kurzen Wellen durch das Wasserfenster

Forscher entwickeln die Optische Kohärenztomografie weiter

In der Augenheilkunde ist sie bereits seit langem ein Klassiker, lässt sich doch durch sie einfach und sicher die Netzhaut durchdringen und dreidimensional darstellen: die Optische Kohärenztomografie. Doch was beim Auge funktioniert, wollen Physiker der Friedrich-Schiller-Universität Jena auch für andere Anwendungsgebiete in der Mikroskopie weiterentwickeln. Gemeinsam mit Kollegen aus Warschau starten sie dafür im Januar 2018 ein Forschungsprojekt. Ein Programm, durch das die Deutsche Forschungsgemeinschaft und das National Science Center in Polen solche Kooperationen unterstützt, fördert das Vorhaben in den kommenden drei Jahren mit einer knappen halben Million Euro.

„Dank einer hier in Jena entwickelten Methode können wir die optische Kohärenztomografie mit extrem ultravioletter, breitbandiger Strahlung, auch XUV-Strahlung genannt, bereits im Labor durchführen und sind so unabhängig von Großgeräten, wie etwa Teilchenbeschleunigern“, erklärt Dr. Christian Rödel, der das Projekt gemeinsam mit seinem Jenaer Kollegen Dr. Slawomir Skruszewicz koordiniert. „Damit gelingt es uns beispielsweise, Halbleiter zu durchleuchten, Materialübergänge genauer zu untersuchen und Nanostrukturen aufzulösen.“ Bisher seien die Forscher dabei allerdings auf Siliziumchips beschränkt. Um die Methode auch für andere Materialien nutzbar zu machen, benötigen die Wissenschaftler noch kurzwelligeres Licht, das näher am Röntgenbereich liegt. „Strahlungsquellen, die das ermöglichen, wollen wir mit den polnischen Kollegen nun entwickeln, denn sie sind ausgewiesene Experten auf dem Gebiet“, sagt Slawomir Skruszewicz.

Gas emittiert Strahlung

Elementarer Bestandteil sei dabei ein Target, also ein Festkörper oder Gas, auf dem ein Laserstrahl trifft und ihn zur kurzwelligen XUV-Strahlung umwandelt. „Das Licht beschleunigt die Elektronen im Gas und diese emittieren dann die von uns benötigte Strahlung“, erklärt Skruszewicz. „Im Idealfall erhalten wir dabei eine breitbandige Linienstrahlung, die sehr aussagekräftige Spektren produziert.“ Erste Erfolge konnten die polnischen Physiker bereits mit Xenon verbuchen. Das Edelgas wurde dabei gekühlt und das Licht durch die dabei entstandenen Tropfen gelenkt. In weiteren Versuchen wollen die Forscher den Laser etwa durch einen Strahl flüssigen Xenons lenken und so eventuell die gewünschte Strahlung erhalten.

Mit den zu entwickelnden Lichtquellen wollen die Jenaer Wissenschaftler auch so kurzwellige Strahlung erzeugen, dass sie im Bereich des sogenannten Wasserfensters liegen. Dabei handelt es sich um einen genau definierten Spektralbereich, der eine relativ hohe Eindringtiefe in Wasser garantiert und bei dem andere Elemente, wie etwa Kohlen- und Sauerstoff, das Licht stärker absorbieren. „Das würde uns die Abbildung biologischer Proben erlauben – die Optische Kohärenztomografie könnte somit auch in den Lebenswissenschaften zum Einsatz kommen“, informiert Christian Rödel über ein wichtiges Ziel des Projektes.

Fakten, Hintergründe, Dossiers

Mehr über Uni Jena

  • News

    So könnten die ersten Biomoleküle entstanden sein

    Die chemischen Vorstufen unserer heutigen Biomoleküle könnten nicht nur in der Tiefsee an hydrothermalen Quellen entstanden sein, sondern auch in warmen Tümpeln an der Erdoberfläche. Die chemischen Reaktionen, die in dieser „Ursuppe“ möglicherweise stattgefunden haben, hat ein international ... mehr

    Fitness ist auch eine Frage des Timings

    Alles Leben auf der Erde verläuft im 24-Stunden-Takt: Von den kleinsten Bakterien bis zu den Menschen passen sich Organismen an den Wechsel von Tag und Nacht an. Dabei helfen ihnen die Wahrnehmung äußerer Faktoren, wie Licht und Temperatur, und deren Wechsel im Tag-Nacht-Verlauf. Zusätzlich ... mehr

    Wasserstoff katalytisch gewinnen – ohne teure Edelmetalle

    Ein Forschungsteam der Friedrich-Schiller-Universität Jena hat ein von der Natur inspiriertes molekulares Photosystem entwickelt, das unter Einstrahlung von sichtbarem Licht Wasserstoff erzeugt. Anders als bisherige Systeme dieser Art kommt es ohne Edel- oder Schwermetalle aus. Umweltverträ ... mehr

  • q&more Artikel

    Effektive Wirkstoff-Navigation bei Sepsis

    Viele Wirkstoffkandidaten gelangen wegen Nebenwirkungen nicht zur klinischen Anwendung. So können z.B. Inhibitoren der Phosphoinositid-3-Kinase-γ, eines Signalproteins, das bei Infektionen eine bedeutende Rolle spielt, wegen Nebenwirkungen auf die Immunantwort nicht verwendet werden. mehr

    Gene auf Zucker

    Der gezielte Transport von DNA und RNA mit Vektoren, meist aus synthetischen Polymeren, in Zellkulturen gehört mittlerweile zum festen Repertoire der biologischen Forschung und Entwicklung, was die Vielzahl an kommerziellen Kits zeigt. Allerdings gestalten sich bisher nicht nur viele Laborv ... mehr

    Sex oder Tod

    Diatomeen sind einzellige Mikroalgen, die aufgrund ihrer filigranen und reich verzierten mineralisierten Zellwand auch als Kieselalgen bezeichnet werden. Trotz ihrer mikroskopisch kleinen Zellen spielen ­diese Algen eine fundamentale ­Rolle für marine Ökosysteme und sind sogar zentrale Akte ... mehr

  • Autoren

    Prof. Dr. Ulrich S. Schubert

    Ulrich S. Schubert, Jahrgang 1969, ist Lehrstuhlinhaber (W3) für Organische und Makromolekulare Chemie an der Friedrich-Schiller-Universität Jena. Er studierte Chemie an den Universitäten Frankfurt und Bayreuth und promovierte anschließend an den Universitäten Bayreuth und South Florida, Ta ... mehr

    Prof. Dr. Thomas Heinze

    Thomas Heinze, Jahrgang 1958, studierte Chemie an der FSU Jena, wo er 1985 promovierte und nach dem Postdoc an der Katholischen Universität Leuven (Belgien) 1997 habilitierte. 2001 folgte er dem Ruf auf eine Professur für Makromolekulare Chemie an die Bergische Universität Wuppertal. Seit 2 ... mehr

    Prof. Dr. Dagmar Fischer

    Dagmar Fischer ist approbierte Apothekerin und promovierte 1997 im Fach Pharmazeutische Technologie und Biopharmazie an der Philipps-Universität Marburg. Nach einem Aufenthalt am Texas Tech University Health Sciences Center, USA, sammelte sie mehrere Jahre Erfahrung als Leiterin der Präklin ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von: