q&more
Meine Merkliste
my.chemie.de  
Login  
Fischer_Heinze_980x442

Der gezielte Transport von DNA und RNA mit Vektoren, meist aus synthetischen Polymeren, in Zellkulturen gehört mittlerweile zum festen Repertoire der biologischen Forschung und Entwicklung, was die Vielzahl an kommerziellen Kits zeigt. Allerdings gestalten sich bisher nicht nur viele Laborversuche, sondern vor allem auch der Transfer in die Klinik zur Anwendung am Patienten schwierig, was in vielen Fällen der unzureichenden Verträglichkeit und Abbaubarkeit solcher Träger geschuldet ist. An der FSU Jena werden neue biobasierte, natürliche Systeme aus Polysacchariden entwickelt, die diesen Aspekten Abhilfe verschaffen könnten.

Vektoren zum Transfer von DNA und RNA müssen „Allrounder“ sein, die eine Vielzahl von verschiedenen Aufgaben erfüllen sollen. Sie sollen (i) die Stabilität ihrer Nukleinsäurefracht gewährleisten, (ii) die effiziente und möglichst selektive Aufnahme in Zielzellen bewerkstelligen und (iii) eine effiziente Wirkung (Transfektion) bei (iv) gleichzeitig hervorragender Verträglichkeit ermöglichen. Insbesondere im Hinblick auf eine Anwendung am Patienten müssen Sicherheit und Biokompatibilität zwingend gewährleistet sein [1].

Dextrane: altbewährte Zucker neu entdeckt

Dextrane sind in Pharmazie und Medizin seit vielen Jahrzehnten erfolgreich unter anderem als Plasmaexpander, Tablettierhilfsstoff und Stabilisator kolloidaler Zubereitungen im Einsatz und daher bezüglich ihrer Toxikologie und Bioverteilung hinreichend bekannt. Die Polysaccharide werden in saccharosehaltigen Medien durch die Aktivität des Enzyms Dextran-Saccharase, das von verschiedenen Leuconostoc-Stämmen produziert wird, biosynthetisch als verzweigtes oder unverzweigtes Molekül gebildet. Dextrane werden im Organismus abgebaut und im Körper verstoffwechselt [2]. Da sie selbst nicht in der Lage sind, mit DNA und RNA zu interagieren, lag die Idee nahe, kationische Seitengruppen kovalent zu binden, die zu einer elektrostatischen Wechselwirkung mit der negativ geladenen DNA und RNA führen [3]. Allerdings bestanden bisher solche Seitenketten oftmals wieder aus synthetischen Polymeren und nicht biogenen Funktionalitäten, die selbst nicht abbaubar oder ausscheidbar sind und teilweise hohe Toxizität aufweisen.

Zucker und Aminosäuren: zwei natürliche Partner

Demgegenüber erscheint es sehr aussichtsreich, natürlich vorkommende Funktionalitäten mit Amin- und Ammoniumgruppen in die Dextrane einzuführen. Auf der Basis der Jenaer Arbeiten zur Polysaccharidchemie sind effiziente Reaktionen unter milden Bedingungen entwickelt worden, die es erlauben, praktisch jede Carbonsäure in Polysaccharide einzuführen [4, 5].

Abb. 1 Herstellung einer Library von Dextranaminosäureestern mit kontrollierbaren Eigenschaften in hoher Qualität

Erstmals gelang die reproduzierbare Herstellung von Dextranaminosäureestern mit kontrollierbarer Molmasse und einstellbarem Gehalt (durchschnittlichen Substitutionsgrad, DS) der Estersubstituenten; eine Synthesevariante, die sich problemlos up-scalen lässt. Dazu werden Aminosäuren mit kommerziell verfügbarem N,N-Carbonyldiimidazol aktiviert und ergeben in einer homogenen Reaktion die korrespondierenden Dextranderivate mit hoher Reinheit und ohne nennenswerten Polymerabbau (der durchschnittliche Polymerisationsgrad, DP des Ausgangsdextrans bleibt erhalten), es entstehen keine toxischen Nebenprodukte. Auf der Basis dieses Synthesekonzeptes ist eine Library von mono- und multifunktionalen Aminosäureestern von Dextranen zugänglich, die darüber hinaus andere funktionelle Gruppen tragen können; ein Baukasten für eine praktisch unüberschaubare Zahl von Dextranderivaten mit bemerkenswerter struktureller Vielfalt. Die bisher ausgewählten Produkte zeigen herausragende Eigenschaften als DNA-Transporter, wobei gegenwärtig β-Alanin-substituierte Dextrane im Vordergrund des Interesses stehen.

Alaninsubstituierte Dextrane als DNA-Transporter

Alaninsubstituierte Dextrane sind hervorragend wasserlöslich, nach Gefriertrocknung dauerhaft bei Raumtemperatur zu lagern und können rasch und vollständig in Puffern und Zellkulturmedien rekonstituiert werden. In standardisierten Toxizitätstests (nach DIN ISO 10993-5) an L929-Mausfibroblasten zeigten sie hervorragende Verträglichkeiten, die mehr als um den Faktor 2 höher liegen als bei bekannten synthetischen Polymeren wie z. B. den oftmals verwendeten Polyethyleniminen [6]. Untersucht man die Wechselwirkungen mit Blutzellen wie Erythrozyten, die bei Injektion die ersten Kontaktpartner im Organismus sind, sind in therapeutisch relevanten Konzentrationsbereichen keine hämolytischen Effekte oder Aggregationen von Blutzellen zu beobachten, d.h. keine thrombotischen Ereignisse.

Abb. 2 Aminosäuresubstituierte Dextrane als biologisch verträgliche und hoch effiziente Transfektionssysteme

Durch einfaches Hinzupipettieren von DNA oder RNA zu den Lösungen der alaninsubstituierten Dextrane bilden sich spontan Komplexe, die innerhalb weniger Minuten einsetzbar sind. Mit einer gesamtkationischen Ladung und einer Größe von ca. 100 nm unter optimierten Bedingungen und Ansatzverhältnissen erfüllen die Komplexe alle Voraussetzungen für eine gute Aufnahme über die Zellmembran. Sie sind in serumhaltigen Medien einsetzbar, schützen die Nukleinsäuren gegen enzymatische Angriffe durch Nukleasen des Blutes genauso, wie sie gegen unkontrollierte und unerwünschte Verdrängung der Nukleinsäuren durch Serumproteine stabilisieren. Sie sind in der Lage Säugerzellen zu transfizieren mit der Besonderheit, dass auch bei hohen Dosen keine toxikologisch bedenklichen Effekte zu beobachten sind.

Was bringt die Zukunft?

Eine Anpassung der Komplexe auf Dextran-Alanin-Basis für die jeweilige Anwendung kann nicht nur durch Variation der Herstellungsbedingungen und Variation der Komplexzusammensetzung erreicht werden. Das Konzept lässt sich auf verschiedene kationische Aminosäuren und deren Kombination übertragen. Eigenschaften wie Bindungsstärke der Komplexe mit DNA und RNA, Stabilität, Toxizität und Transfektionseffizienz lassen sich durch Auswahl und Kombination von verschiedenen Aminosäuretypen steuern. Während z.B. Lysin eher für die Bindung von DNA vorteilhaft ist, wirkt sich ein Überschuss an Alanin vor allem positiv auf die Transfektion von Zellen aus. Zusammengefasst bietet die neue Synthesestrategie zahlreiche Ansätze zu Strukturvariationen. Zahlreiche Limitierungen wie unzureichende Bioabbaubarkeit, inakzeptable Toxizität und umständlich durchzuführende Versuchsvorschriften können mit den aminosäuremodifizierten Dextranen umgangen werden.

___________________________________________________________________________________________

Infobox

Kompetenzzentrum Polysaccharidforschung
Friedrich-Schiller-Universität Jena

Das Kompetenzzentrum Polysaccharidforschung (KZP) ist eine leistungsstarke Forschungsinstitution, die von sechs internationalen Konzernen an der Friedrich-Schiller-Universität Jena und am Thüringischen Institut für Textil- und Kunststoff-Forschung e.V. Rudolstadt im Jahr 2002 gegründet wurde und durch den Firmenverbund bis ins Jahr 2007 finanziell unterstützt wurde. Im Mittelpunkt stehen gemeinsame FuE-Arbeiten an Polysacchariden als funktionelle Rohstoffe der Zukunft.

Sowohl innerhalb der Grundlagen- als auch der angewandten Forschung werden Produkte und Verfahren untersucht und entwickelt. Hierbei verfolgt das KZP verschiedene Strategien zur Derivatisierung von Biopolymeren unter homogenen und heterogenen Reaktionsbedingungen und zur regioselektiven Funktionalisierung. Die vorhandene Technik erlaubt zudem die Überführung von Verfahren bis in den Technikumsmaßstab. Überdies wird mit der Arbeit des KZP die Aus- und Weiterbildung von Studenten auf dem Gebiet der bioorganischen Chemie langfristig garantiert.

Leiter des Kompetenzzentrums:
Prof. Dr. Thomas Heinze

___________________________________________________________________________________________

(Erstveröffentlichung des Beitrages: Fischer, D., Heinze, T. (2015) labor&more 8, 26–29)

Literatur:
[1] Schlenk, F. et al. (2013) Recent developments and perspectives on gene therapy using synthetic vectors, Ther Deliv. 4(1), 95 –113, DOI: 10.4155/tde.12.128
[2] Heinze, T. et al. (2006) Functional Polymers Based on Dextran, in: Klemm D. (eds) Polysaccharides II, Adv Polym Sci 205, Berlin, Heidelberg: Springer, 199 –291, DOI: 10.1007/12_100
[3] Ochrimenko, S. et al. (2014) Dextran-graft-linear poly(ethylene imine)s for gene delivery: Importance of the linking strategy, Carbohydr Polym 113, 597 –606, DOI: 10.1016/j.carbpol.2014.07.048
[4] Varshosaz, J. (2012) Dextran conjugates in drug delivery, Expert Opin Drug Deliv., 9(5), 509 –523, DOI: 10.1517/17425247.2012.673580
[5] Heinze, T. et al. (2006) Esterification of Polysaccharides, Springer-Verlag Berlin Heidelberg, 2006 ISBN 3-540-32103-9, DOI: 10.1007/3-540-32112-8
[6] Jaeger M. et al. (2012) Branched and linear poly(ethylene imine)-based conjugates: synthetic modification, characterization, and application, Chem Soc Rev 41(13), 4755 –4767, DOI: 10.1039/c2cs35146c

Publikationsdatum: 02.10.2018

Fakten, Hintergründe, Dossiers

  • Gentransfer
  • Zellkulturen
  • Polysaccharide
  • Dextrane
  • Aminosäuren
  • Polysaccharidchemie
  • DNA-Transporter
  • Transfektion

Mehr über Uni Jena

  • News

    Wenn Verwandte von Krankheitserregern Gutes tun

    Es gibt Bakterien, die Wasserstoff und Naturstoffe produzieren, was sowohl für die Umwelt als auch für die Medizin wichtig ist. In Jena hat ein Forschungsteam nun die Fähigkeit zur Wasserstoff- und Naturstoffproduktion in einer Gruppe von Bakterien nachgewiesen, die bis dahin eher als Krank ... mehr

    Wenn Eiweiße einander die Hand geben

    Ob in Spinnenseide, Holz, dem Raum zwischen Körperzellen, in Sehnen oder als natürliche Abdeckung kleiner Wunden: Fasern aus Eiweißen finden sich in der Natur sehr häufig. Die kleinen Eiweißfasern, von Experten auch Proteinnanofasern genannt, weisen häufig hervorragende Eigenschaften, wie h ... mehr

    Mit kurzen Wellen durch das Wasserfenster

    In der Augenheilkunde ist sie bereits seit langem ein Klassiker, lässt sich doch durch sie einfach und sicher die Netzhaut durchdringen und dreidimensional darstellen: die Optische Kohärenztomografie. Doch was beim Auge funktioniert, wollen Physiker der Friedrich-Schiller-Universität Jena a ... mehr

  • q&more Artikel

    Sex oder Tod

    Diatomeen sind einzellige Mikroalgen, die aufgrund ihrer filigranen und reich verzierten mineralisierten Zellwand auch als Kieselalgen bezeichnet werden. Trotz ihrer mikroskopisch kleinen Zellen spielen ­diese Algen eine fundamentale ­Rolle für marine Ökosysteme und sind sogar zentrale Akte ... mehr

    Wertgebende Komponenten

    Die Isolierung bioaktiver Pflanzeninhaltsstoffe, ätherischer Öle bzw. pflanzlicher Farb- und Aromastoffe erfordert aufwändige und kostenintensive Verfahren. Oft ist jedoch für verschiedene Anwendungen eine Isolierung der Einzelkomponenten nicht erforderlich, es genügt deren Konzentrierung. ... mehr

    Gesundes Fett im Fisch

    Aufgrund unterschiedlicher gesundheits­fördernder Effekte sind Omega-3-Fettsäuren buchstäblich in aller Munde, aber nur langsam lichten sich die Schleier bezüglich der zu Grunde liegenden molekularen Wirkmechanismen. Es wird zunehmend klar, dass man sehr kritisch prüfen muss, um welche Fett ... mehr

  • Autoren

    Prof. Dr. Thomas Heinze

    Thomas Heinze, Jahrgang 1958, studierte Chemie an der FSU Jena, wo er 1985 promovierte und nach dem Postdoc an der Katholischen Universität Leuven (Belgien) 1997 habilitierte. 2001 folgte er dem Ruf auf eine Professur für Makromolekulare Chemie an die Bergische Universität Wuppertal. Seit 2 ... mehr

    Prof. Dr. Dagmar Fischer

    Dagmar Fischer ist approbierte Apothekerin und promovierte 1997 im Fach Pharmazeutische Technologie und Biopharmazie an der Philipps-Universität Marburg. Nach einem Aufenthalt am Texas Tech University Health Sciences Center, USA, sammelte sie mehrere Jahre Erfahrung als Leiterin der Präklin ... mehr

    Prof. Dr. Stefan H. Heinemann

    Stefan H. Heinemann, geb. 1960, studierte Physik an der Universität Göttingen. Nach zweijähriger Forschungszeit an der Yale University, New Haven, USA, promovierte er 1990 am Max-Planck-Institut für biophysikalische Chemie in Göttingen. Nach einem Forschungsaufenthalt an der Standford Unive ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:



Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.