q&more
Meine Merkliste
my.chemie.de  
Login  

Aufgrund unterschiedlicher gesundheits­fördernder Effekte sind Omega-3-Fettsäuren buchstäblich in aller Munde, aber nur langsam lichten sich die Schleier bezüglich der zu Grunde liegenden molekularen Wirkmechanismen. Es wird zunehmend klar, dass man sehr kritisch prüfen muss, um welche Fettsäuren es sich tatsächlich handelt.

Omega-3-Fettsäuren

Abb. 1 Modell eines BK-Kanals. Diese K+-selektiven Kanäle, bestehend aus 4 Slo1 Proteinuntereinheiten, werden sowohl durch elektrische Depolarisation der Membran als auch durch einen Anstieg in der intrazellulären Ca2+-Konzentration geöffnet. Der dann einsetzende Auswärtsstrom von K+ bewirkt eine Hyperpolarisation und führt in glatten Muskelzellen zur Relaxation. Bei glatten Muskelzellen der Blutgefäße hat dies eine Weitung der Gefäßwand und eine Senkung des Blutdrucks zur Folge. Offenbar sind BK-Kanäle hoch-affine Rezeptoren für die Omega-3-Fettsäure DHA. Grün: Membranständiger Proteinteil, basierend auf einer Homologiemodellierung zu Kv1.2/Kv2.1 (PDB 2R9R); blau: regulative zytosolische Domäne entsprechend der Röntgenstruktur PDB 3NAF. In den markierten Bereichen (rot/magenta) befinden sich Bindestellen für Ca2+-Ionen. Der Verbindungsbereich zwischen der Transmembrandomäne und der zytosolischen Domäne ist noch nicht strukturell aufgeklärt und fehlt daher in dieser Darstellung.

Langkettige Omega-3-Fettsäuren wie die Docosahexaensäure (DHA) kommen in fettigem Fisch wie Hering, Lachs, Sardelle oder Makrele vor und gelten als ein wichtiger Bestandteil einer gesunden Ernährung. Ihre Aufnahme wird u. a. mit einer blutdrucksenkenden Wirkung, einer Stärkung des Immunsystems sowie positiven Effekten auf die Entwicklung des Nervensystems und auf das Herz-Kreislauf-System assoziiert. Klinische Studien zur Einnahme von Nahrungs­ergänzungsstoffen mit Omega-3-Fettsäuren zeichnen allerdings kein klares Bild. Ein Grund für die Heterogenität solcher Untersuchungen liegt sicherlich darin, dass in vielen Fällen unterschiedliche, mehrfach ungesättigte Fettsäuren als „Omega-3-Fettsäuren“ zusammengefasst werden (s. Infobox), was eine objektive Vergleichbarkeit erschwert.

Streng genommen müsste eine Ernährung mit pflanzlichen ω-3-Fettsäuren wie der α-Linolensäure ausreichend sein, da diese im Körper zu Eicosapentaensäure (EPA) und DHA umgebaut werden können. Die vermehrte Aufnahme von DHA und EPA scheint jedoch einen zusätzlichen posi­tiven Effekt auf die Gesundheit auszuüben. Dementsprechend gilt landläufig die Devise „Fisch ist gesund“. Als Folge dessen erfreuen sich zahlreiche Nahrungsergänzungsmittel, die Fischöle oder synthetische ω-3-Fettsäuren enthalten, einer großen Beliebtheit. Hier lohnt sich ein genauer Blick auf den Beipackzettel, denn solche Produkte enthalten oft auch leicht modifizierte Varianten wie z. B. Fettsäuren, die an der Carboxygruppe einen Ethylester aufweisen (DHA-EE und EPA-EE; s. Infobox).

Die vielfältigen Beobachtungen bezüglich gesundheitsfördernder Effekte von DHA und EPA waren für lange Zeit mit einem unzureichenden Verständnis der molekularen Wirkmechanismen gepaart. In diesem Jahr gab es jedoch auf diesem Gebiet erfreuliche Fortschritte. Eine amerikanische Studie konnte zeigen, dass DHA in Makrophagen zu so genannten Maresinen (Maresin = macro­phage-derived mediators of inflammation resolution) umgesetzt werden kann. Maresine wiederum unterdrücken Entzündungsreaktionen und terminieren die Immunantwort [1]. Dies könnte eine Erklärung für die positive Wirkung von DHA bei chronischen Entzündungen wie Arthritis, Rheuma oder Atherosklerose darstellen.

Für diesen Signalweg ist DHA nur eine Vorstufe, während eine direkte Bindung von DHA an ein Rezeptorprotein durch Oh et al. [2] gezeigt wurde. Offenbar wird der G-Protein-gekoppelte Rezeptor 120 (GPR120), der in die Entzündungsreaktion und die Gewichtskontrolle involviert ist, direkt durch DHA aktiviert; dies geschieht allerdings erst bei einer relativ hohen effektiven Konzentration von ca. 10 µM.

Mehrfach ungesättigte Fettsäuren

Mehrfach ungesättigte Fettsäuren werden nach der Länge der Fettsäureketten, also der Anzahl der Kohlenstoffatome, sowie durch die Anzahl und Position der Doppelbindungen zwischen den Kohlenstoffen gekennzeichnet. Befindet sich die erste Doppel­bindung, ausgehend vom Methylende, am dritten Kohlen­stoffatom, so handelt es sich um ω-3-Fettsäuren. Prominente Beispiele sind die Docosahexaensäure (DHA) mit 22 und die Eico­sapentaensäure (EPA) mit 20 Kohlenstoffatomen. Nur 18 Kohlenstoffatome weist die α-Linolensäure (ALA) auf. ALA ist eine essenzielle Fettsäure, d. h. der menschliche Körper kann sie nicht selbst herstellen; sie befindet sich in pflanzlichen Ölen und wird z. B. Margarine zugesetzt. Im Körper wird ALA in Membranen eingebaut und teilweise zu den längerkettigen DHA und EPA, die in höheren Konzentrationen in Fischölen vorkommen, umgewandelt. Nahrungsergänzungsmittel enthalten oft auch leicht modifizierte Varianten wie z. B. solche, die an der Car­boxygruppe einen Ethylester aufweisen (DHA-EE und EPA-EE). Durch Autooxidation von DHA kann 17-hydroxyl DHA entstehen. Arachidonsäure und Linolsäure gehören zu den ω-6-Fettsäuren.

Kaliumkanäle als Rezeptoren für DHA

In einer interdisziplinären Zusammenarbeit mit Prof. T. Hoshi von der University of Pennsylvania, Philadelphia konnten wir nun eine direkte Einflussnahme von DHA auf den vaskulären Tonus und somit auf den Blutdruck nachweisen [3]. Die „Rezeptoren“ für DHA sind dabei sogenannte BK-Kalium­kanäle (synonym zu MaxiK- oder BKCa-­Kanälen). Diese Kanalkomplexe aus vier Slo1 α-Untereinheiten (s. Abb. 1) werden sowohl durch einen Abfall der elektrischen Membranspannung als auch durch einen Anstieg in der intrazellulären Ca2+-Konzentration aktiviert. Einmal geöffnet, leiten diese Kanäle einen sehr großen K+-Strom (daher „BK“ = big conductance K+), was die Membranspannung wieder erhöht. In erregbaren Zellen, wie z. B. glatten Muskelzellen oder Neuronen, wirkt der BK-Kanal somit als negativer Rückkoppler, indem er einer verstärkten zellulären Erregung – einher­gehend mit geringem Membranpotenzial und hohem Ca2+-Spiegel – entgegenwirkt. In glatten Muskelzellen, die Blutgefäße umschließen, bewirkt die Aktivierung von BK-Kanälen eine Relaxation und als Folge dessen eine Gefäßerweiterung und einen Abfall des Blutdrucks.

DHA bindet an den BK-Kanalkomplex mit hoher Affinität (ca. 500 nM) und bewirkt ein Öffnen des Kanals. Mechanistisch geschieht dies durch eine Verschiebung der Spannungsabhängigkeit des Kanals, sodass dieser nun in der Gegenwart von DHA schon beim Ruhemembranpotenzial aktiviert wird und einer zellulären Erregung entgegenwirkt. Dieser Effekt ist erheblich geringer bei der etwas kürzeren EPA und noch viel kleiner bei der in Pflanzen vorkommenden α-Linolensäure (ALA). BK-Kanäle scheinen also besonders gut durch ω-3-Fettsäuren mit einer Kettenlänge von 22 C-Atomen akti­viert zu werden. Allerdings gilt dies nicht für die endständig modifizierten Ethylester: DHA-EE aktiviert BK-Kanäle nicht. Mehr noch, in Mischungen mit DHA reduziert es sogar die aktivierende Wirkung von DHA. Ebenso vermag oxidiertes DHA (17-OH DHA) den Kanal nicht zu öffnen. BK-Kanäle sind also offenbar sehr spezifische Rezeptoren für Docosahexaensäure.

Aus diesen molekularen Untersuchungen ließ sich schließen, dass DHA vermutlich einen über BK-Kanäle vermittelten Einfluss auf den Blutdruck hat. Dies konnte in weiteren Experimenten mit narkotisierten Mäusen eindrücklich nachgewiesen werden. Wie in Abbildung 2 dargestellt, führte eine intravenöse Injektion von DHA zu einem akuten Blutdruckabfall. Solch eine Reaktion blieb völlig aus bei Knock-out-Mäusen, in denen das Slo1-Gen inaktiviert wurde und somit keine BK-Kanäle gebildet werden. Darüber hinaus hatte DHA-EE, die Ethylester-Verbindung von DHA, die sich häufig in Omega-3-Fettsäure-Pillen befindet, keinen Einfluss auf den Blutdruck (Abb. 2). Den Blutdruck betreffend kann die Gabe von nicht natürlichen Omega-3-Fettsäuren folglich sogar kontraproduktiv sein, wenngleich natürlich bei der Aufnahme über die Nahrung noch ein komplexer Meta­bolismus, der über Esterasen zu einer mehr oder weniger vollständigen Freisetzung dieser Fettsäuren führen soll, berücksichtigt werden muss. Im Licht der widersprüchlichen Ergebnisse zu den kardiovaskulären Wirkungen der Omega-3-Fettsäure-Präparate [4] besteht hier jedoch sicher Bedarf an klinischer Forschung.

Der Einfluss von DHA auf die Funktion von BK-Kanälen hängt zudem davon ab, aus welchen Proteinuntereinheiten der Kanalkomplex besteht. Neben vier identischen α-Untereinheiten (s. Abb. 1) werden noch bis zu zwei Hilfsproteine (β-Untereinheiten) in den Komplex eingebaut. Die Wirkung von DHA ist besonders groß, wenn entweder Slo-β1 oder Slo-β4 vorliegen [5]. Da Slo-β1 hauptsächlich in glatten Muskelzellen und Slo-β4 in Neuronen vorkommt, ist zu erwarten, dass DHA neben der blutdruck­senkenden Wirkung über die Relaxation von glatten Muskelzellen auch einen dämpfenden Einfluss auf die neuronale Erregbarkeit ausüben kann.

Ein schmaler Grad zwischen „gut“ und „schlecht“

Abb. 2 Die Omega-3-Fettsäure DHA (Docosahe­xaensäure) und der entsprechende Ethylester (DHA-EE) unterscheiden sich markant in ihrer Wirkung auf den Blutdruck in anästhesierten Mäusen. Während eine Injektion von DHA zu einem starken Blutdruckabfall führt, ist DHA-EE weitgehend wirkungslos.

Neben ihrem Einsatz als „Nutriceuticals“ in Nahrungsergänzungsmitteln für die Allgemeinbevölkerung werden Omega-3-Fettsäuren wegen ihrer vermuteten gesundheits­fördernden Eigenschaften – insbesondere der Hemmung von Entzündungsprozessen – auch gezielt Ernährungslösungen für kritisch kranke Intensivpatienten zugesetzt. In vergleichenden Studien waren die Ergebnisse dieser so genannten „Immunonutri­tion“ jedoch widersprüchlich. Während bei postoperativen Patienten insbesondere eine enterale Ernährung, die u. a. mit Omega-3-Fettsäuren angereichert wird, die Liegedauer auf der Intensivstation sowie die Infektionsrate reduziert, ist der Einsatz bei kritisch kranken, insbesondere septischen Patienten potenziell sogar gefährlich [6]. Bei diesen Patienten kommt es z. B. durch Induktion der Stickstoffmonoxidbildung regelhaft zu einem teils dramatischen Abfall des peripheren Gefäßwiderstands und damit des Blutdrucks. Die Verstärkung des Abfalls durch Aktivierung von BK-Kanälen, ausgelöst durch DHA, könnte dabei einen möglichen Faktor für die ungünstigen Effekte der Omega-3-Fettsäuren bei Patienten mit lebensbedrohlichen Infektionen darstellen. Es bleibt also genau zu untersuchen, unter welchen klinischen Bedingungen welche Omega-3-Fettsäuren förderlich sein können und wie diese genau zu dosieren sind.

Letztlich bleibt die Erkenntnis, dass es sich bei diesen „natürlichen“ Produkten keineswegs um immer unbedenkliche oder gesunde Nahrungsmittelinhaltsstoffe handelt, wenn sie in hohen Konzentrationen unter bestimmten Bedingungen verabreicht werden. Vielmehr sollten sie als Pharmaka mit einem definierten Wirkmechanismus betrachtet werden. Durch die gezielte Erforschung der molekularen Wirkmechanismen wie z. B. der Identifizierung von BK-Kanälen als spezifische Rezeptoren für DHA [3] und der Aufklärung der indirekten Wirkung von DHA über die Bildung von Maresinen [1] sollte es aber in naher Zukunft gelingen, Studien zur Aufnahme von Omega-3-Fettsäuren und deren Effekte auf den Organismus besser interpretieren zu können.

Literatur:
[1] Dalli, J. et al. (2013), FASEB J. 27, 2573–2583
[2] Oh, D.Y. et al. (2010), Cell 142, 687–698
[3] Hoshi, T. et al. (2013), Proc. Natl. Acad. Sci. USA 110, 4816–4821
[4] Mangat, I. (2009), Am. J Clin. Nutr. 89, 1597S-1601S
[5] Hoshi, T. et al. (2013), Proc. Natl. Acad. Sci. USA 110, 4822–4827
[6] Reinhart, K. et al (2010), Intensivmed. 47, 185–207

Fakten, Hintergründe, Dossiers

  • Omega-3-Fettsäuren
  • Docosahexaensäure
  • Kaliumkanäle

Mehr über Uni Jena

  • News

    Magische Enzyme

    Kleine Pilze mit großer Wirkung: „Magic Mushrooms“ aus der Gattung Psilocybe produzieren psychoaktive Naturstoffe, die die Wahrnehmung nach Verzehr stark verändern. Inzwischen interessieren sich auch Pharmakologen für den Inhaltsstoff Psilocybin und dessen Wirkung auf das menschliche Nerven ... mehr

    Hohe Auflösung ohne Teilchenbeschleuniger

    Beim Augenarzt gehört sie fast schon zum Standardprogramm: die optische Kohärenztomografie. Mit diesem Bildgebungsverfahren lassen sich durch Infrarotstrahlung die verschiedenen Schichten der Netzhaut durchdringen und dreidimensional genauer untersuchen, ohne dass das Auge überhaupt berührt ... mehr

    Kaltes Licht aus der Natur

    Glühwürmchen sind nicht nur schön anzusehen – seit vielen Jahren sind die Leuchtkäfer für Wissenschaftler weltweit von Interesse. Vor allem ihr Leuchtmechanismus, der kaltes Licht erzeugt, beschäftigt die Forschung. Denn Licht bedeutet immer auch Energie. Doch gerade für die Anwendung in de ... mehr

  • q&more Artikel

    Wertgebende Komponenten

    Die Isolierung bioaktiver Pflanzeninhaltsstoffe, ätherischer Öle bzw. pflanzlicher Farb- und Aromastoffe erfordert aufwändige und kostenintensive Verfahren. Oft ist jedoch für verschiedene Anwendungen eine Isolierung der Einzelkomponenten nicht erforderlich, es genügt deren Konzentrierung. ... mehr

    Sex oder Tod

    Diatomeen sind einzellige Mikroalgen, die aufgrund ihrer filigranen und reich verzierten mineralisierten Zellwand auch als Kieselalgen bezeichnet werden. Trotz ihrer mikroskopisch kleinen Zellen spielen ­diese Algen eine fundamentale ­Rolle für marine Ökosysteme und sind sogar zentrale Akte ... mehr

    Wechselwirkungen

    Dieser Beitrag gibt einen Einblick in die „molekulare“ Emulsionsbildung, bei der Inter­aktionen zwischen ionischen Biopolymeren zur Erzeugung unterschiedlicher Mikro- und Makrostrukturen mit besonderen Eigenschaften führen. Bei der Herstellung von ­Öl-in-Wasser-Emulsionen ermöglichen derart ... mehr

  • Autoren

    Prof. Dr. Stefan H. Heinemann

    Stefan H. Heinemann, geb. 1960, studierte Physik an der Universität Göttingen. Nach zweijähriger Forschungszeit an der Yale University, New Haven, USA, promovierte er 1990 am Max-Planck-Institut für biophysikalische Chemie in Göttingen. Nach einem Forschungsaufenthalt an der Standford Unive ... mehr

    Prof. Dr. Gerhard K. E. Scriba

    Gerhard K. E. Scriba, geb. 1956, studierte Pharmazie in Bonn und erhielt 1980 die Approbation für Apotheker. Er promovierte an der Westfälischen Wilhelms-Universität Münster, wo er sich 1995 für das Fach Pharmazeutische Chemie habilitierte. 1999 folgte er einem Ruf auf die C3-Professur für ... mehr

Mehr über Universitätsklinikum Jena

  • News

    Biochip statt Tierversuch

    Die Wissenschaftler Dr. Alexander Mosig, Dr. Knut Rennert vom Universitätsklinikum Jena und Prof. Dr. Stefan Lorkowski von der Universität Jena werden mit dem Thüringer Tierschutzpreis 2014 ausgezeichnet. Der Preis würdigt die von den Forschern entwickelten Organbiochips als Alternativen zu ... mehr

  • Autoren

    Prof. Dr. Michael Bauer

    Michael Bauer, geb. 1963, studierte Medizin an der Universität des Saarlandes und der Ninewells Medical School in Dundee, Schottland. Nach Postdoktorat an der Johns Hopkins Medical School, Baltimore, USA, und einer Gastprofessur an der University of North Carolina in Charlotte erfolgte 1997 ... mehr

Whitepaper

Produkt

Meist gelesen

  1. Exakte Konzentrationen bei geringen Kosten
  2. Neue Anforderungen
  3. Brücke über das „Tal des Todes“
  4. Die richtige Dosis
  5. Herausforderung
  6. Bildhaft deutlich
  7. Interessante Gesundheitsförderer
  8. Richtigkeit und Präzision
  9. Gleichgewicht
  10. Silber-Lipid-Zwerge

Themen A-Z

Alle Themen

q&more – die Networking-Platform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:



Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.