q&more
Meine Merkliste
my.chemie.de  
Login  

News

3D-gedruckte Minifabriken

science animated by Bara Krautz

Mit der neuen Technik lassen sich biochemische Minifabriken mit unterschiedlichen Bakterien auf komplexe Oberflächen drucken.

05.12.2017: ETH-Forscher entwickelten für den 3D-Druck eine biokompatible Tinte mit lebenden Bakterien. Damit lassen sich biologische Materialien herstellen, die Giftstoffe abbauen oder hochreine Zellulose für biomedizinische Anwendungen produzieren können.

Es gibt bald nichts mehr, das nicht im 3D-Druck hergestellt werden kann. Bei den Materialien, die dafür verwendet werden, handelte es sich aber bisher um «tote Materie» wie Kunststoffe oder Metalle.

Nun stellt eine Gruppe von ETH-Forschern um Professor André Studart, Leiter des Labors für Komplexe Materialien, eine neue 3D-Druckplattform vor, die mit lebender Materie arbeitet. Die Forscher entwickelten eine Tinte, die Bakterien enthält. Damit lassen sich biochemische Minifabriken mit unterschiedlichen Funktionalitäten drucken, je nachdem, welche Bakterienarten die Forscher in der Tinte einsetzen.

Eigenschaften von Bakterien nutzen

In ihrer Arbeit verwendeten Studarts Mitarbeiter Patrick Rühs und Manuel Schaffner die Bakterienarten Pseudomonas putida und Acetobacter xylinum. Die erste Art kann das giftige Phenol, das die chemische Industrie im grossen Stil produziert, abbauen. Die zweite Art sondert hochreine Nano-Zellulose ab. Die bakterielle Zellulose wirkt schmerzlindernd, hält feucht und ist stabil. Sie könnte daher bei Brandverletzungen verwendet werden.

Die neue Druckplattform der ETH-Forscher bietet zahlreiche Kombinationsmöglichkeiten. So können die Wissenschaftler in einem Durchlauf bis zu vier verschiedene Tinten mit unterschiedlichen Bakterienarten in unterschiedlichen Konzentrationen verwenden, um damit Objekte mit mehreren Funktionen herzustellen.

Die Tinte besteht aus einem biokompatiblen und strukturgebenden Hydrogel. Dieses beinhaltet Hyaluronsäure, langkettige Zuckermoleküle sowie Kieselsäure. Das Nährmedium der Bakterien wird der Tinte beigemischt, sodass die Bakterien alles haben, um zu leben. In dieses Hydrogel können die Forscher die Bakterien mit den gewünschten Eigenschaften beimengen und schliesslich beliebige dreidimensionale Strukturen drucken.

Viskos wie Zahnpasta

Bei der Entwicklung des bakterienhaltigen Hydrogels waren dessen Fliesseigenschaften eine besondere Herausforderung. So muss die Tinte ausreichend fliessen können, damit sie sich durch die Druckdüse pressen lässt. Je fester die Tinte, desto schlechter können sich die Bakterien in ihr bewegen und desto weniger produktiv sind sie. Gleichzeitig müssen die ausgedruckten Formen stabil genug sein, damit sie das Gewicht von weiteren Lagen tragen. «Die Tinte muss so viskos wie Zahnpasta sein und die Konsistenz von Nivea-Handcrème haben», fasst Schaffner das Erfolgsrezept zusammen.

Enormes Potenzial

Die Lebensdauer der gedruckten Minifabriken haben die Materialwissenschaftler noch nicht untersucht. «Da Bakterien kaum Ansprüche haben, gehen wir davon aus, dass sie sehr lange in gedruckten Strukturen überleben können», schätzt Rühs.

Die Forschung steht erst am Anfang. «Das Potenzial, mit bakterienhaltigen Hydrogels zu drucken, ist enorm, weil die Vielfalt an nützlichen Bakterien sehr gross ist», sagt Rühs. Dass bislang kaum jemand bei additiven Verfahren mit Bakterien gearbeitet hat, führt er auf den schlechten Ruf der Mikroorganismen zurück. «Die meisten Menschen bringen Bakterien nur mit Krankheiten in Verbindung. Dabei könnten wir ohne sie gar nicht leben», betont er. Die Forscher halten ihre neue Tinte zudem für komplett unbedenklich. Die verwendeten Bakterien sind allesamt harmlos und nützlich.

Giftstoffsensor und Ölpestfilter

Neben medizinischen und biotechnologischen Anwendungen können sich die Forscher viele weitere nützliche Anwendungen vorstellen. So lassen sich mit solchen Objekten beispielsweise Abbauprozesse oder die Entstehung von Biofilmen untersuchen. Eine praktische Anwendung wäre ein 3D-gedruckter Sensor mit Bakterien, welcher Giftstoffe im Trinkwasser anzeigen würde. Denkbar sind auch bakterienhaltige Filter, die bei Ölkatastrophen zum Einsatz kommen. Herausforderungen sind derzeit die lange Druckzeit und die schwierige Skalierbarkeit. Um Zellulose für biomedizinische Anwendungen zu erzeugen, braucht Acetobacter derzeit mehrere Tage. Die Wissenschaftler sind jedoch überzeugt, dass sie die Prozesse noch optimieren und beschleunigen können.

Die Entwicklung spezieller Materialien für den 3D-Druck ist eine Spezialität der Forschungsgruppe von ETH-Professor André Studart. So haben er und sein Team auch eine druckfähige hochporöse Tinte aus Keramik entwickelt, mit der sich sehr leichte knochenartige Strukturen für die Energiegewinnung drucken lassen.

Originalveröffentlichung:
Schaffner M, Ruehs PA, Coulter F, Kilcher S, Studart AR; "3D Printing of Bacteria into Functional Complex Materials"; Science Advances; 2017

Fakten, Hintergründe, Dossiers

  • Giftstoffe
  • Bakterien
  • 3D-Drucktechnik
  • Pseudomonas putida
  • Acetobacter xylinum
  • Nanozellulose
  • Kieselsäure
  • Nährmedien
  • ETH Zürich

Mehr über ETH Zürich

  • News

    Feinchemikalien umweltfreundlich und effizient herstellen

    Chemieingenieure der ETH Zürich entwickelten einen neuen Katalysator, mit dem kostengünstig und auf umweltfreundliche Weise zwei Kohlenstoffatome miteinander verbunden werden können. Die Technologie könnte schon bald in der Industrie zum Einsatz kommen. Die chemische Industrie produziert n ... mehr

    Forscher bilden menschliches Knochenmarkgewebe nach

    Täglich werden im Knochenmark mehrere Milliarden Blutzellen gebildet. Für die ständige Zufuhr sorgen dabei Blutstammzellen, die sich in speziellen Nischen im Knochenmark befinden. Sie können sich selbst vermehren und zu roten und weissen Blutkörperchen ausreifen, die aus dem Knochenmark ins ... mehr

    Designerzellen: Künstliches Enzym kann Genschalter betätigen

    In künstlichen molekularen Systemen lassen sich komplexe Reaktionskaskaden auslösen: Schweizer Wissenschaftler haben ein Enzym konstruiert, das in eine Säugerzelle eindringen kann und dort die Freisetzung eines Hormons beschleunigt. Dieses wiederum aktiviert einen Genschalter, der die Herst ... mehr

  • q&more Artikel

    Analytik in Picoliter-Volumina

    Zeit, Kosten und personellen Aufwand senken – viele grundlegende sowie angewandte analytische und diagnostische Herausforderungen können mit Lab-on-a-Chip-Systemen realisiert werden. Sie erlauben die Verringerung von Probenmengen, die Automatisierung und Parallelisierung von Arbeitsschritte ... mehr

    Investition für die Zukunft

    Dies ist das ganz besondere Anliegen und gleichzeitig der Anspruch von Frau Dr. Irmgard Werner, die als Dozentin an der ETH Zürich jährlich rund 65 Pharmaziestudenten im 5. Semester im Praktikum „pharmazeutische Analytik“ betreut. Mit Freude und Begeisterung für ihr Fach stellt sie sich imm ... mehr

  • Autoren

    Prof. Dr. Petra S. Dittrich

    Jg. 1974, ist Außerordentliche Professorin am Department Biosysteme der ETH Zürich. Sie studierte Chemie an der Universität Bielefeld und Universidad de Salamanca (Spanien). Nach der Promotion am Max-Planck-Institut für biophysikalische Chemie in Göttingen war sie Postdoktorandin am ISAS In ... mehr

    Dr. Felix Kurth

    Jg. 1982, studierte Bioingenieurwesen an der Technischen Universität Dortmund und an der Königlich Technischen Hochschule in Stockholm. Für seine Promotion, die er 2015 von der Eidgenössisch Technischen Hochschule in Zürich erlangte, entwickelte er Lab-on-a-Chip Systeme und Methoden zur Qua ... mehr

    Lucas Armbrecht

    Jg. 1989, studierte Mikrosystemtechnik an der Albert-Ludwigs Universität in Freiburg im Breisgau. Während seines Masterstudiums konzentrierte er sich auf die Bereiche Sensorik und Lab-on-a-Chip. Seit dem Juni 2015 forscht er in der Arbeitsgruppe für Bioanalytik im Bereich Einzelzellanalytik ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:



Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.