q&more
Meine Merkliste
my.chemie.de  
Login  

News

Mensch gegen (Synthese-)Maschine

Aktives Maschinenlernen zur Entdeckung und Kristallisation von Polyoxometallat-Riesenmolekülen

© Wiley-VCH

04.08.2017: Wer ist der bessere Experimentator, Mensch oder Roboter? Wenn es um das Ausloten von Synthese- und Kristallisationsbedingungen anorganischer „Riesenmoleküle“ geht, dann hat die aktiv lernende Maschine eindeutig die Nase vorn, wie britische Wissenschaftler am Beispiel eines Polyoxometallats zeigen.

Polyoxometallate entstehen durch eine selbstorganisierte Zusammenlagerung einer größeren Anzahl über Sauerstoffatome verbrückter Metallatome. Potenzielle Anwendungen finden sich etwa in der Katalyse, der Elektronik und der Medizin. Erkenntnisse über die beteiligten Selbstorganisationsprozesse könnten zudem bei der Entwicklung funktionaler chemischer Systeme, z.B. „molekularer Maschinen“, helfen.

Polyoxometallate bieten eine nahezu unbegrenzte Strukturvielfalt. Dennoch ist es nicht leicht, neue zu finden, denn die Zusammenlagerung komplexer anorganischer Moleküle zu Riesenmolekülen ist ein schwer absehbarer Vorgang. So müssen Bedingungen gefunden werden, unter denen sich die Bausteine zusammenlagern und zudem kristallisieren, sodass sie sich charakterisieren lassen.

Das Team um Leroy Cronin von der Universität Glasgow (Großbritannien) hat jetzt einen neuen Ansatz entwickelt, um den Rahmen geeigneter Bedingungen für Synthese und Kristallisation von Polyoxometallaten abzustecken. Er basiert auf jüngsten Fortschritten auf dem Gebiet des Maschinenlernens, bekannt als aktives Lernen. Ihre trainierte Maschine ließen sie dann gegen die Intuition erfahrener Experimentatoren antreten. Testbeispiel war Na6[Mo120Ce6O366H12(H2O)78]·200 H2O, ein neuer ringförmiger Polyoxometallat-Cluster, der kürzlich vom automatisierten chemischen Robotersystem der Forscher entdeckt worden war.

Bei ansonsten vorgeschriebenem Versuchsprotokoll sollten die Mengenverhältnisse der drei benötigten Reagenzienlösungen variiert werden. Ausgangspunkt für den experimentellen Wettstreit war ein Datensatz erfolgreicher und erfolgloser Kristallisationsexperimente. Zehn Experimente sollten geplant und basierend auf deren Ergebnissen jeweils der nächste Satz von zehn Experimenten angegangen werden – insgesamt 100 Kristallisationsversuche.

Auch wenn die Experimentatoren aus Fleisch und Blut insgesamt mehr erfolgreiche Kristallisationen vorweisen konnten, zeigte sich der weitaus „mutiger“ vorgehende Maschinen-Algorithmus unterm Strich überlegen, indem er einen deutlich breiteren Bereich des „Kristallisationsraums“ abdeckte. Die Vorhersagegenauigkeit, ob ein Experiment zu Kristallen führt, konnte durch die Versuche der Maschine deutlich stärker erhöht werden als durch die der Experimentatoren. Eine Reihe aus 100 rein zufälligen Versuchen brachte dagegen keinerlei Verbesserung. Die Maschine entdeckte zudem einen Bereich von Bedingungen, der zu Kristallen führte, für den dies rein intuitiv nicht zu erwarten gewesen wäre. Neuartige Verbindungen lassen sich durch diese „unvoreingenommene“ automatisierte Methode mit höherer Wahrscheinlichkeit entdecken als durch menschliche Intuition. Die Forscher suchen jetzt nach Wegen zu besonders effizienten „Teams“ aus Mensch und Maschine.

Originalveröffentlichung:
Vasilios Duros , Jonathan Grizou , Weimin Xuan , Zied Hosni , De‐Liang Long , Haralampos N. Miras , Leroy Cronin; "Human versus Robots in the Discovery and Crystallization of Gigantic Polyoxometalates"; Angew. Chem. Int. Ed.; 2017

Fakten, Hintergründe, Dossiers

  • Automatisierte Synthese

Mehr über University of Glasgow

  • News

    Durchgedrehte Blutströpfchen

    Parasiteninfektionen wie Malaria und Schlafkrankheit betreffen Hunderte Millionen Menschen, vor allem in den ärmsten Regionen der Welt. Oft ist die Diagnose schwierig, da die Konzentration der Parasiten im Blut sehr gering sein kann. Britische Wissenschaftler haben jetzt eine einfache chipb ... mehr

Mehr über Wiley-VCH

  • News

    Poren mit Erinnerungsvermögen

    Ob Trennprozesse oder Photovoltaik, Katalyse oder moderne Elektronik: Poröse Polymer-Membranen sind für viele Bereiche von großem Interesse. Membranen, deren Mikroporen sich gezielt zwischen verschiedenen Formen und Größen schalten lassen, könnten ganz neue Perspektiven eröffnen. Wissenscha ... mehr

    Multifunktionale Plattform für den Transport von Gentherapeutika

    Die gezielte Veränderung des Genoms (Gen-Editing) eines Tumors ist ein äußerst vielversprechendes krebstherapeutisches Verfahren. Ein Wissenschaftler-Team aus China hat nun ein multifunktionales Transportmittel entwickelt, um solche „Genscheren” zielgenau in den Zellkern und in das Genom vo ... mehr

    Magische Enzyme

    Kleine Pilze mit großer Wirkung: „Magic Mushrooms“ aus der Gattung Psilocybe produzieren psychoaktive Naturstoffe, die die Wahrnehmung nach Verzehr stark verändern. Inzwischen interessieren sich auch Pharmakologen für den Inhaltsstoff Psilocybin und dessen Wirkung auf das menschliche Nerven ... mehr

q&more – die Networking-Platform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:



Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.