q&more
Meine Merkliste
my.chemie.de  
Login  

News

Nanoinjektion steigert Überlebensrate von Zellen

Neue Methode für Mikroskopie

Universität Bielefeld

Eine Glaspipette injiziert leuchtfähige Moleküle in eine Nierenzelle (Bild links). Wenige Sekunden später leuchten die Moleküle und lassen neue Details erkennen (Bild rechts).

Universität Bielefeld

Dr. Simon Hennig hat die Nanoinjektion entwickelt. Dank des neuen Verfahrens überleben neun von zehn Zellen, wenn sie für mikroskopische Untersuchungen vorbereitet werden.

23.02.2017: Wie entwickeln sich Tumore? Und wie wandeln Bakterien harmlose Substanzen in medizinische Wirkstoffe um? Wenn Biophysiker verstehen wollen, was in lebenden Zellen vorgeht, müssen sie Farbstoffe oder andere Fremdmoleküle hineinbringen. Um die Zellwand zu überwinden, ohne die Zelle dauerhaft zu beschädigen, gibt es mehrere Ansätze. Physiker der Universität Bielefeld haben ein besonders schonendes Verfahren dafür entwickelt: die Nanoinjektion.

In einer neuen Studie in „Scientific Reports“ zeigen sie, dass bei dieser Methode neun von zehn Zellen die Injektion von Fremdmolekülen überleben.

Eine der bekanntesten Methoden für die Untersuchung von bakteriellen, pflanzlichen und tierischen Zellen ist die Fluoreszenzmikroskopie. Bei dieser Methode werden mit Hilfe von Farbstoffmolekülen Proteine oder andere Strukturen einer Zelle markiert, die untersucht werden sollen. Die Moleküle sind fluoreszierend. Sie leuchten, wenn sie mit Licht angeregt werden und damit leuchten auch die markierten Strukturen der Zelle. „Die Methode funktioniert sehr gut an fixierten, also nicht lebenden Zellen“, sagt Professor Dr. Thomas Huser, Leiter der Forschungsgruppe Biomolekulare Photonik. „Das Problem ist allerdings, dass viele Erkenntnisse nur mit lebenden Zellen gewonnen werden können.“

Dr. Simon Hennig ergänzt: „Lebende Zellen wehren das Eindringen der meisten Fluoreszenzmarker ab.“ Der Physiker forscht in Husers Gruppe. Um auch solche gewöhnlich abgewehrten Marker in die Zelle zu bekommen, hat er die Nanoinjektion entwickelt: Mit einer winzigen hohlen Glaspipette kann er damit die „Leuchtmoleküle“ in einzelne Zellen einbringen lassen. Das Verfahren ist computergesteuert, ein speziell für die Nanoinjektion entwickeltes Gerät führt die Pipette in die Zelle ein. Anders als bei der herkömmlich verwendeten Mikroinjektion ist hier die Spitze der Glaskapillaren deutlich kleiner. Außerdem verhindert das Verfahren, dass die Zelle bei der Injektion vergrößert wird, da nur die Moleküle, nicht aber die Flüssigkeit in der Pipette mit übertragen wird. „Dabei ist die Methode so präzise, dass die Moleküle sogar in den Zellkern einer Zelle eingebracht werden können“, sagt Hennig.

Die neue Studie belegt, dass die Methode die Injektion vieler Marker-Sorten ermöglicht und dass sie von den Zellen sehr gut vertragen wird. „Dieser Nachweis war nötig, weil bisherige Techniken wie die Mikroinjektion die Zellen so stark belastet haben, dass die meisten von ihnen die Behandlung nicht überlebten“, sagt Hennig. Sein Kollege Matthias Simonis testete die Nanoinjektion an mehr als 300 Zellen und verglich das Ergebnis mit dem der Mikroinjektion. Das Fazit: 92 Prozent der Zellen überlebten die Nanoinjektion im Gegensatz zu 40 Prozent bei der Mikroinjektion. „Die Auswertungen haben auch belegt, dass die Zellen nach der Nanoinjektion ein normales Teilungsverhalten zeigten“, sagt Hennig. Das Teilungsverhalten ist dem Physiker zufolge nicht nur ein Anzeichen für den gesunden Zustand der Zelle. Es eröffnet auch neue Möglichkeiten für Experimente. So lässt sich ein negativer Einfluss der Injektion von vornherein ausschließen. Die Forscher können also die injizierten Zellen untersuchen, ohne sich zusätzliche Gedanken über den Effekt der Injektion machen zu müssen. Hennig schätzt die Nanoinjektion als besonders chancenreich ein, um zum Beispiel zu untersuchen, wie einzelne Zellen miteinander reagieren.

Originalveröffentlichung:
Matthias Simonis, Wolfgang Hübner, Alice Wilking, Thomas Huser & Simon Hennig; "Survival rate of eukaryotic cells following electrophoretic nanoinjection"; Scientific Reports; 25. Januar 2017

Fakten, Hintergründe, Dossiers

Mehr über Uni Bielefeld

  • News

    Raumschiff Enterprise Konzept: Optischer Traktorstrahl hält Bakterien fest

    Wenn Naturwissenschaftler Blutzellen, Algen oder Bakterien mit dem Mikroskop untersuchen wollen, müssen sie diese Zellen bisher auf Trägermaterial, etwa Glasplättchen, befestigen. Physiker der Universitäten Bielefeld und Frankfurt am Main haben eine Methode entwickelt, mit der sich biologis ... mehr

    Heiße Elektronen weisen Weg zum perfekten Lichteinfang

    Licht absorbierende Schichten spielen in vielen alltäglichen Anwendungen eine Rolle – zum Beispiel in Solarzellen oder Sensoren. Mit ihrer Hilfe wird Licht in elektrischen Strom oder Wärme umgewandelt, die Schichten fangen das Licht förmlich ein. Obwohl diese Absorberschichten verbreitet ei ... mehr

    Studierende entwickeln Schnelltests, um die Qualität von Trinkwasser zu prüfen

    Was trinke ich da eigentlich? Ist mein Trinkwasser verunreinigt durch Schwermetalle? Und kann ich selbst testen, ob K.O.-Tropfen in meinem Getränk sind? Zehn Studierende der Universität Bielefeld arbeiten daran, einen Teststreifen zu entwickeln, damit jeder schnell die Qualität seines Geträ ... mehr

  • q&more Artikel

    Die dritte Dimension

    Proteine spielen in unserem täglichen Leben eine wichtige Rolle. Dank der Proteine können wir reden, uns bewegen und denken, sie beschützen uns vor Krankheiten oder reparieren Schäden. Auch als pharmazeutische Wirkstoffe werden Proteine immer populärer, so lag 2012 in Deutschland der Anteil ... mehr

  • Autoren

    Jens Sproß

    Jens Sproß, geb. 1981, studierte Chemie an der Friedrich-Schiller-Universität Jena und promovierte an der Martin-Luther-Universität Halle-Wittenberg. Seit Juni 2012 ist er am Institut für Organische Chemie I der Universität Bielefeld als Leiter der Abteilung Massenspektrometrie beschäftigt. ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:



Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.