q&more
Meine Merkliste
my.chemie.de  
Login  

News

„Sehhilfe“ für massenspektrometrische Bildgebung

Verteilung chemischer Substanzen kann nun auch an biologischen Proben mit unebenen Oberflächen sichtbar gemacht werden

Benjamin Bartels, Max-Planck-Institut für chemische Ökologie

Höhenprofil einen Wirsingstückes (4 x 4 mm). Die maximale Höhendifferenz beträgt 2.38 mm.

Benjamin Bartels, Max-Planck-Institut für chemische Ökologie

beantworten (RSC Advances, Januar 2017, DOI: 10.1039/C6RA26854D) Speziell angefertigte Laser-Quelle für bildgebende Massenspektrometrie: Mit Hilfe der verbesserten Laser-Ablations-Elektrospray-Ionisierung (LAESI) können nun auch die Oberflächen von unebenen Proben, wie dieses zerklüftete Stück eines Wirsingblatts, analysiert werden.

10.02.2017: Die Analyse von biologischen Gewebeproben mit unebenen Oberflächen stellte bislang ein großes Problem dar. Forscher am Max-Planck-Institut für chemische Ökologie in Jena haben ein massenspektrometrisches Verfahren weiterentwickelt, mit dem nun auch die Verteilung von Molekülen auf welligen, haarigen, bauchigen oder zerklüfteten Proben sichtbar gemacht werden kann. Die Quelle für das Laser-basierte Verfahren wurde speziell angefertigt, um den Höhenunterschieden unebener Proben gerecht zu werden. Mit Hilfe eines Entfernungs-Sensors wird ein Höhenprofil der Oberfläche vor der eigentlichen chemischen Bildgebung aufgezeichnet. Das verbesserte Verfahren eröffnet neue Perspektiven, um ökologische Fragestellungen zu beantworten.

Mit der Methode der Laser-Ablations-Elektrospray-Ionisierung (LAESI), einem massenspektrometrischen bildgebenden Verfahren, ist es möglich, die Verteilung verschiedener chemischer Verbindung in einer biologischen Probe sichtbar zu machen. Dabei wird mit Hilfe einer Lasers ein winziger Teil der Probe durch lokale Erhitzung entfernt: Irgendwann platzt der angestrahlte Teil der Probe auf und etwas Dampf entweicht. Die dabei gebildete Dampfwolke wird anschließend durch einen elektrisch aufgeladenen Nebel ionisiert, sodass die im Dampf enthaltenen Substanzen vom Massenspektrometer aufgespürt werden können. „Die räumlich eingegrenzte Laser-Sondierung ermöglicht es uns, die chemischen Informationen so zusammenzutragen, dass ein Gesamtbild entsteht, ähnlich wie auch Fotos aus einzelnen Pixeln zusammengesetzt sind, “ beschreibt Studienleiter Aleš Svatoš die technischen Grundlagen des Verfahrens.

Die Verteilung von chemischen Verbindungen in Blüten, Blättern, Stängeln und anderen Pflanzenteilen ist für die ökologische Forschung von großer Bedeutung. Viele solcher Verbindungen sind sogenannte sekundäre Pflanzenstoffe, die von Pflanzen gebildet werden, um beispielsweise Bestäuber anzulocken sowie Fraßfeinde oder schädliche Erreger abzuwehren. Dabei spielt es nicht nur eine Rolle, dass bestimmte Moleküle im Gewebe angereichert werden, sondern auch wo dies der Fall ist. Ist ein bestimmter Abwehrstoff gleichmäßig in einem Pflanzenblatt verteilt oder gibt es spezielle Drüsen, die durch die Bildung chemischer Substanzen Schutz verleihen? In welchen Teilen der Außenhaut eines Insekts sind Gifte oder chemische Botenstoffe für die Kommunikation mit Artgenossen besonders stark angereichert? Auch die Wechselwirkungen zwischen verschiedenen Lebewesen auf molekularer Ebene sind von Interesse.

„Die größte Herausforderung bei derartigen Untersuchungen ist es, die Beschaffenheit einer Probe über den gesamten Analyseprozess hinweg zu erhalten. Leider kommt es oft vor, dass die Probenvorbereitung die Analyseergebnisse beeinflusst, weil die chemische Anordnung der Probe verändert wird. Üblicherweise werden im Vorbereitungsprozess  aus einer biologischen Probe dünne und flache Schnitte angefertigt, denn bislang konnten nur flache Proben gewährleisten, dass der Laser optimal fokussiert. Dies wiederum ist wichtig für zuverlässige Analyseergebnisse,“ fasst Benjamin Bartels, der Erstautor der Studie und Doktorand in der Arbeitsgruppe Massenspektrometrie, die Grenzen des bisherigen Verfahrens zusammen.

In der chemischen Ökologie haben viele biologische Proben eine unebene Oberfläche: Pflanzenblätter haben oftmals haarige Strukturen oder sie sind gewellt. Auch Raupen können haarig sein, immer sind sie jedoch rundlich und nicht flach. Benjamin Bartels und und Aleš Svatoš, der die Arbeitsgruppe Massenspektrometrie leitet, haben daher das LAESI-Verfahren an unebene Oberflächen angepasst, um die Verteilung von chemischen Substanzen auch auf  Proben mit ausgeprägten dreidimensionalen Formen abzubilden, ohne die Zuverlässigkeit klassischer Analysen aufs Spiel zu setzen.

Das neue Instrument misst das Höhenprofil der jeweiligen Probe vor der eigentlichen massenspektrometrischen Analyse aus. Die aufgezeichneten Höhenprofile werden für die Korrektur der Entfernung zwischen der fokussierenden Linse des Lasers und der Probenoberfläche genutzt. Auf diese Art und Weise wird ein wesentlicher Faktor für die zuverlässige Lasersondierung während des gesamten Experiments konstant gehalten und die Methode liefert auch für Proben mit dreidimensionalen Strukturen verlässliche Daten. „Dies bedeutet, dass wir die Verteilung von Molekülen auf biologischen Oberflächen eines wesentlich größeren Probenspektrums untersuchen können. Ich denke da beispielsweise an das Außenskelett von Insekten, Mikrobengemeinschaften in ihrer natürlichen Umgebung oder an den Vergleich der Inhalte einzelner Blatthaare einer Pflanze,“ erläutert Benjamin Bartels die Vorteile der Weiterentwicklung.

Die Forscher planen nun weitere Verbesserungen und Verfeinerungen der Methode, damit LAESI auch für Routine-Messungen an unebenen Oberflächen eingesetzt werden kann.

Originalveröffentlichung:
Bartels, B., Kulkarni, P., Danz, N., Böcker, S., Saluz, H. P., Svatoš, A.; "Mapping metabolites from rough terrain: laser ablation electrospray ionization on non-flat samples"; RSC Advances 7, 9045-9050; 2017

Fakten, Hintergründe, Dossiers

Mehr über MPI für chemische Ökologie

  • q&more Artikel

    Pflanzenflüsterer

    Pflanzen sind keine stummen und dekorativen Elemente unserer Umwelt, sondern sie nehmen, genau wie wir, ihre Umgebung aktiv wahr und reagieren auf Reize. mehr

  • Autoren

    Prof. Dr. Wilhelm Boland

    Wilhelm Boland, geboren 1950 in Wesel am Niederrhein, studierte Chemie und Biochemie (1969–75) in Münster und Köln und promovierte 1978 bei Jaenicke mit einer Arbeit über Pheromone mariner Braunalgen. Danach war er in Köln wissenschaftlicher Assistent und habilitierte dort 1987 für das Fach ... mehr

Mehr über Max-Planck-Gesellschaft

  • News

    Zellulärer Stromausfall

    Ein gemeinsames Merkmal neurodegenerativer Erkrankungen sind Proteinablagerungen in den Nervenzellen. Wie Wissenschaftler jetzt berichten, produzieren auch gesunde Zellen kontinuierlich verklumpungsanfällige Proteine. Grund dafür sind reaktive Sauerstoffspezies, die bei der zellulären Energ ... mehr

    Steife Fasern aus Schleim gesponnen

    Die Natur ist immer wieder ein guter Lehrmeister – auch für Materialwissenschaftler. An Stummelfüßern haben Wissenschaftler nun einen bemerkenswerten Mechanismus beobachtet, durch den sich Polymermaterialien bilden. Um Beute zu fangen, schießen die wurmartigen Kleintiere mit einem klebrigen ... mehr

    Protein-Atlas für längeres Leben

    Im Alter lassen viele Prozesse in den Zellen nach und das Risiko an altersbedingten Krankheiten wie Alzheimer, Parkinson oder Diabetes zu erkranken steigt dramatisch. Aber wirkt sich das Altern auf alle Organe und Gewebe gleichermaßen aus? Und sollten Medikamente, welche die Gesundheit im A ... mehr

q&more – die Networking-Platform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:



Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.