q&more
Meine Merkliste
my.chemie.de  
Login  

News

Raumschiff Enterprise Konzept: Optischer Traktorstrahl hält Bakterien fest

Zellen mit sehr hoher Auflösung untersuchen

Foto: Universität Bielefeld

Aufnahme der Verteilung der Erbinformation in einer Escherichia coli-Bakterienzelle.

15.12.2016: Wenn Naturwissenschaftler Blutzellen, Algen oder Bakterien mit dem Mikroskop untersuchen wollen, müssen sie diese Zellen bisher auf Trägermaterial, etwa Glasplättchen, befestigen. Physiker der Universitäten Bielefeld und Frankfurt am Main haben eine Methode entwickelt, mit der sich biologische Zellen mit einem Laserstahl festhalten lassen und dabei mit höchster Auflösung untersucht werden können.

Bekannt ist das Prinzip als „Traktorstrahl“ aus Science-Fiction-Literatur und -Filmen. Mit diesem Verfahren haben sie hochauflösende Aufnahmen der DNA in einzelnen Bakterien erhalten. Der Physiker Robin Diekmann stellt gemeinsam mit Kollegen die Neuentwicklung in „Nature Communications“ vor.

Forschende, die biologische Zellen mikroskopieren wollen, stehen mitunter vor dem Problem, dass sich die Zellen durch die Vorbehandlung verändern. Viele Bakterien bevorzugen es, frei in Lösung schwimmen zu können. Ähnlich ist es bei Blutzellen: Sie sind ständig in schnellem Fluss und verharren nicht auf Oberflächen. Haften sie auf einer Oberfläche, so verändert sich ihr Aufbau und sie sterben.

„Unsere neue Methode ermöglicht es, Zellen, die nicht an Oberflächen verankert werden können, mittels einer optischen Falle mit sehr hoher Auflösung zu untersuchen. Die Zellen werden mit einer Art optischem Traktorstrahl festgehalten. Das Prinzip hinter diesem Laserstrahl ähnelt dem aus der Fernsehserie ,Raumschiff Enterprise‘ bekannten Konzept“, sagt Professor Dr. Thomas Huser. Er leitet die Forschungsgruppe Biomolekulare Photonik in der Fakultät für Physik. „Das Besondere ist, dass die Proben nicht nur ohne Trägermaterial fixiert werden, sie lassen sich darüber hinaus auch drehen und wenden. Der Laserstrahl fungiert als verlängerte Hand für mikroskopisch kleines Hantieren.“

Die Bielefelder Physiker haben das Verfahren für den Einsatz in der hochauflösenden Fluoreszenzmikroskopie weiterentwickelt. Sie gilt als Schlüsseltechnologie in der Biologie und Biomedizin, weil damit erstmals biologische Prozesse auf einer Größenskala in lebenden Zellen untersucht werden können, die bisher der Elektronenmikroskopie vorbehalten war. Für Aufnahmen mit solchen Mikroskopen reichern Forscher die zu untersuchenden Zellen mit Farbstoffen an, die zu leuchten beginnen, wenn ein Laserstrahl auf sie gerichtet ist. Mit einem Sensor lässt sich diese Fluoreszenzstrahlung aufzeichnen, damit sind sogar dreidimensionale Aufnahmen der Zelle möglich.

In der neuen Methode dient den Bielefelder Forschern ein zweiter Laserstrahl als optische Falle, um die Zellen unter dem Mikroskop schweben zu lassen und gezielt zu bewegen. „Der Laserstrahl ist sehr intensiv, aber für das Auge unsichtbar, weil es sich um Infrarotlicht handelt“, sagt Robin Diekmann, wissenschaftlicher Mitarbeiter in der Arbeitsgruppe Biomolekulare Photonik. „Wird dieser Laserstrahl auf eine Zelle gelenkt, entstehen innerhalb der Zelle Kräfte, welche die Zelle im Fokus des Strahls festhalten“, sagt Diekmann. Den Bielefelder Physikern ist es gelungen, mit ihrer Methode Bakterienzellen so festzuhalten und zu drehen, dass die Zellen von mehreren Seiten abgebildet werden können. Dank der Drehung konnten die Forscher die dreidimensionale Struktur der DNA mit circa 0,0001 Millimeter Auflösung untersuchen.

Professor Huser und sein Team wollen die Methode so weiterentwickeln, dass sie damit das Zusammenspiel von lebenden Zellen beobachten können. Damit könnten sie zum Beispiel untersuchen, wie Krankheitserreger in Zellen eindringen.

Für die Entwicklung der neuen Methode arbeiteten die Bielefelder Wissenschaftler mit Prof. Dr. Mike Heilemann und Christoph Spahn von der Goethe-Universität Frankfurt am Main zusammen.

Originalveröffentlichung:
Robin Diekmann, Deanna Wolfson, Christoph Spahn, Mike Heilemann, Mark Schüttpelz, Thomas Huser; "Nanoscopy of bacterial cells immobilized by holographic optical tweezers"; Nature Communications; 13. Dezember 2016

Fakten, Hintergründe, Dossiers

  • Bakterien
  • Zellen
  • Universität Bielefeld
  • 3D-Mikroskopie
  • Laserstrahlen
  • Escherichia coli

Mehr über Uni Bielefeld

  • News

    Nanoinjektion steigert Überlebensrate von Zellen

    Wie entwickeln sich Tumore? Und wie wandeln Bakterien harmlose Substanzen in medizinische Wirkstoffe um? Wenn Biophysiker verstehen wollen, was in lebenden Zellen vorgeht, müssen sie Farbstoffe oder andere Fremdmoleküle hineinbringen. Um die Zellwand zu überwinden, ohne die Zelle dauerhaft ... mehr

    Heiße Elektronen weisen Weg zum perfekten Lichteinfang

    Licht absorbierende Schichten spielen in vielen alltäglichen Anwendungen eine Rolle – zum Beispiel in Solarzellen oder Sensoren. Mit ihrer Hilfe wird Licht in elektrischen Strom oder Wärme umgewandelt, die Schichten fangen das Licht förmlich ein. Obwohl diese Absorberschichten verbreitet ei ... mehr

    Studierende entwickeln Schnelltests, um die Qualität von Trinkwasser zu prüfen

    Was trinke ich da eigentlich? Ist mein Trinkwasser verunreinigt durch Schwermetalle? Und kann ich selbst testen, ob K.O.-Tropfen in meinem Getränk sind? Zehn Studierende der Universität Bielefeld arbeiten daran, einen Teststreifen zu entwickeln, damit jeder schnell die Qualität seines Geträ ... mehr

  • q&more Artikel

    Die dritte Dimension

    Proteine spielen in unserem täglichen Leben eine wichtige Rolle. Dank der Proteine können wir reden, uns bewegen und denken, sie beschützen uns vor Krankheiten oder reparieren Schäden. Auch als pharmazeutische Wirkstoffe werden Proteine immer populärer, so lag 2012 in Deutschland der Anteil ... mehr

  • Autoren

    Jens Sproß

    Jens Sproß, geb. 1981, studierte Chemie an der Friedrich-Schiller-Universität Jena und promovierte an der Martin-Luther-Universität Halle-Wittenberg. Seit Juni 2012 ist er am Institut für Organische Chemie I der Universität Bielefeld als Leiter der Abteilung Massenspektrometrie beschäftigt. ... mehr

Mehr über Uni Frankfurt am Main

  • News

    Neue Wirkstoffe aus dem Baukasten

    Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine Schlüsselrolle. Biotechnologen der Goethe-Universität ist es jetzt gelungen, diese Enzyme nach eigenen Wünschen zu designen, so dass sie gan ... mehr

    Kluge Köpfe haben die besser vernetzten Gehirne

    Bisher wurden verschiedene Ausprägungen von Intelligenz vor allem mit Unterschieden in einzelnen Hirnregionen erklärt. Sind die Gehirne von intelligenteren Personen jedoch auch anders verschaltet als die Gehirne von weniger intelligenten Personen? Eine aktuelle Studie von Wissenschaftlern d ... mehr

    Effizientere Rohstoffnutzung mit Hilfe von „molekularen Fließbändern“

    Wertvolle Produkte wie Treib- und Kunststoffe oder Pharmazeutika aus nachwachsenden Rohstoffen zu gewinnen, ist bisher nicht effizient genug, weil die verwendeten Mikroorganismen den Rohstoff nur langsam verwerten und neben gewünschten Substanzen auch noch viele Nebenprodukte herstellen. Bi ... mehr

  • q&more Artikel

    Warum Biosimilars und nicht Biogenerika?

    Bereits seit 2006 gibt es eine Gruppe gentechnisch hergestellter Medikamente, die unter der Bezeichnung „Biosimilars“ firmieren. Bis vor einem Jahr blieb diese Gruppe selbst in Fachkreisen eher unauffällig. Das ändert sich jedoch derzeit, da kürzlich ein erster Biosimilar-Antikörper zugelas ... mehr

    Paradigmen­wechsel

    Was wäre die Medizin ohne Arzneimittel? Aber werden Arzneimittel heute optimal ­eingesetzt? einesfalls, wie wir heute dank der Erkenntnisse aus der molekularen ­Medizin wissen. Denn beim Einsatz von Arzneimittel gilt es, zwei Aspekte zu beachten: ­die Krankheit und den Patienten. Erst langs ... mehr

    Polar und potenziell trinkwassergefährdend

    Trinkwasser ist in Deutschand ausreichend vorhanden und von überwiegend hoher Qualität. Für die Gewinnung von Trinkwasser in Deutschland wird vor allem Grund­wasser (69,6 %) genutzt, 12,4 % werden aus Seen und Talsperren ­entnommen. Der Anteil von Trinkwasser, das aus Uferfiltrat gewonnen w ... mehr

  • Autoren

    Prof. Dr. Heinfried H. Radeke

    Heinfried H. Radeke, Jg. 1955, studierte Medizin an der Medizinischen Hochschule Hannover (MHH; Approbation 1985) und promovierte mit der wissenschaftlich besten Dissertation des Jahres 1986. Nach zwei Jahren als Assistenzarzt in der Universitätskinder­klinik Göttingen begann er 1987 an der ... mehr

    Prof. Dr. Theo Dingermann

    Theodor Dingermann, Jg. 1948, studierte Pharmazie in Erlangen und promovierte 1980 zum Dr. rer. nat. 1990 erhielt er einen Ruf auf die C4-Professur für pharmazeutische Biologie der Universität Frankfurt. Von 2000 bis 2004 war er Präsident der Deutschen Pharmazeutischen Gesellschaft. Ferner ... mehr

    Prof. Dr. Wilhelm Püttmann

    Wilhelm Püttmann, Jg. 1953, studierte Chemie an der RWTH Aachen und der Universität zu Köln und promovierte 1980 auf dem Gebiet der organischen Synthese bei Prof. Emanuel Vogel in Köln. Nach einer zweijährigen Postdoktorandenzeit erfolgte der Wechsel in die geochemische Analytik mit der Übe ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:



Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.