q&more
Meine Merkliste
my.chemie.de  
Login  

News

Nächster Schritt auf dem Weg zu einer effizienten Biobrennstoffzelle

Zwei kombinierte Konzepte machen System effizient wie Edelmetallkatalysatoren

RUB, Marquard

Das Bochumer Forscherteam: Julian Szczesny, Nikola Marković, Felipe Conzuelo, Wolfgang Schuhmann und Adrian Ruff (von links)

16.11.2018:

Brennstoffzellen, die mit dem Enzym Hydrogenase arbeiten, sind prinzipiell genauso effizient wie solche, die das teure Edelmetall Platin als Katalysator enthalten. Allerdings brauchen die Enzyme eine wässrige Umgebung, und durch diese gelangt der Ausgangsstoff für die Reaktion – Wasserstoff – nur schwer zu der enzymbeladenen Elektrode. Dieses Problem lösten Forscherinnen und Forscher, indem sie zuvor entwickelte Konzepte für die Verpackung der Enzyme mit der Gasdiffusionselektroden-Technik verknüpften. Das so entwickelte System erzielte erheblich höhere Stromdichten, als bisher mit Hydrogenase-Brennstoffzellen erreicht wurden.

In der Zeitschrift „Nature Communications“ beschreibt ein Team des Zentrums für Elektrochemie der Ruhr-Universität Bochum gemeinsam mit Kollegen des Max-Planck-Instituts für Chemische Energiekonversion in Mülheim an der Ruhr und der Universität Lissabon, wie sie die Elektroden entwickelten und testeten. Der Artikel ist am 9. November 2018 erschienen.

Vor- und Nachteile von Gasdiffusionselektroden

Gasdiffusionselektroden können gasförmige Ausgangsstoffe für eine chemische Reaktion effizient zur Elektrodenoberfläche mit dem Katalysator transportieren. Sie wurden bereits in verschiedenen Systemen getestet – allerdings war der Katalysator darin elektronisch direkt an die Elektrodenoberfläche gebunden. „In einem solchen System kann man nur eine einzige Enzymlage auf der Elektrode aufbringen, daher ist der Stromfluss limitiert“, beschreibt der Bochumer Chemiker Dr. Adrian Ruff einen Nachteil. Außerdem waren die Enzyme nicht vor schädlichen Einflüssen aus der Umgebung geschützt. Im Fall der Hydrogenase ist das aber notwendig, weil sie instabil gegenüber Sauerstoff ist.

Redoxpolymer als Sauerstoffschutzschild

Die Bochumer Chemiker vom Zentrum für Elektrochemie haben in den vergangenen Jahren ein Redoxpolymer entwickelt, in das sie die Hydrogenasen einbetten und vor Sauerstoff schützen können. Bislang hatten sie diese Polymermatrix jedoch nur auf ebenen Elektroden getestet, nicht auf porösen dreidimensionalen Strukturen, wie sie Gasdiffusionselektroden besitzen.

„Die porösen Strukturen bieten eine große Oberfläche und ermöglichen so eine hohe Enzymbeladung“, sagt Prof. Dr. Wolfgang Schuhmann, Leiter des Zentrums für Elektrochemie. „Aber ob der Sauerstoffschutzschild auf diesen Strukturen funktioniert und ob das System dann noch gasdurchlässig ist, war nicht klar.“

Enzyme auf Elektroden aufbringen

Problematisch für den Herstellungsprozess ist unter anderem, dass die Elektroden hydrophob, also wasserabweisend, sind, die Enzyme aber hydrophil, also wasserliebend. Die beiden Oberflächen neigen also dazu, sich gegenseitig abzustoßen. Daher tropften die Forscher zunächst eine Adhäsionsschicht auf die Elektrodenoberfläche auf, auf die sie dann im zweiten Schritt die Polymermatrix mit Enzym aufbrachten. „Wir haben gezielt eine Polymermatrix mit einer optimalen Balance aus hydrophilen und hydrophoben Eigenschaften synthetisiert“, erklärt Adrian Ruff. „Nur so war es möglich, stabile Filme mit guter Katalysatorbeladung zu erzielen.“

Die so aufgebauten Elektroden waren immer noch durchlässig für Gas. Außerdem ergaben die Tests, dass die Polymermatrix als Sauerstoffschutzschild auch bei porösen dreidimensionalen Elektroden funktioniert. Mit dem System erzielten die Wissenschaftler eine Stromdichte von acht Milliampere pro Quadratzentimeter. Frühere Bioanoden mit Polymer und Hydrogenase hatten nur ein Milliampere pro Quadratzentimeter erreicht.

Funktionstüchtige Biobrennstoffzelle

Das Team kombinierte die oben beschriebene Bioanode mit einer Biokathode und zeigte, dass sich so eine funktionierende Brennstoffzelle erzeugen lässt. Sie erreichte eine Leistungsdichte von bis zu 3,6 Milliwatt pro Quadratzentimeter und eine Leerlaufspannung von 1,13 Volt, die knapp unter dem theoretischen Maximum von 1,23 Volt liegt.

Originalveröffentlichung:
Julian Szczesny, Nikola Marković, Felipe Conzuelo, Sónia Zacarias, Inês A.C. Pereira, Wolfgang Lubitz, Nicolas Plumeré, Wolfgang Schuhmann, Adrian Ruff; "A gas breathing hydrogen/air biofuel cell comprising a redox polymer/hydrogenase-based bioanode"; Nature Comm.; 2018

Fakten, Hintergründe, Dossiers

  • Enzyme
  • Hydrogenasen
  • Edelmetallkatalysatoren

Mehr über Ruhr-Universität Bochum

  • News

    Mit mechanischer Kraft Biomasse umwandeln

    Eine der größten globalen Herausforderungen ist es derzeit, erneuerbare Quellen effizient einzusetzen, um in Zukunft den steigenden Bedarf an Energie und Chemikalien abzudecken. Biomasse ist dabei eine vielversprechende Alternative zu den bisherigen fossilen Quellen wie Kohle oder Erdöl. De ... mehr

    Edelmetallfreies Katalysatorsystem so aktiv wie Platin

    Als Katalysator für die Sauerstoffreduktion, die zum Beispiel in Brennstoffzellen oder Metall-Luft-Batterien ausschlaggebend ist, setzt die Industrie bisher Platinlegierungen ein. Das teure und seltene Metall setzt der Produktion enge Grenzen. Forscher der Ruhr-Universität Bochum (RUB) und ... mehr

    Neue Einblicke in die Struktur eines Killerproteins

    Das Protein Bax ist für den programmierten Zelltod verantwortlich. Weil es seinen Aufenthaltsort wechselt, ist seine Struktur bislang schwer zu bestimmen gewesen. Neue Einblicke in die Struktur des Proteins Bax haben Forscherinnen und Forscher der Ruhr-Universität Bochum und der Eberhard-Ka ... mehr

  • q&more Artikel

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Prof. Dr. Klaus Gerwert

    Jg. 1956, studierte Physik in Münster und promovierte 1985 in biophysikalischer Chemie in Freiburg. Nach Stationen am Max-Planck-Institut für Molekulare Physiologie in Dortmund und am Scripps Research Institute in La Jolla, USA erhielt er 1993 einen Ruf auf die C4-Professur für Biophysik ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:



Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.