q&more
Meine Merkliste
my.chemie.de  
Login  

News

Effekte zur Effizienzsteigerung der Wasserstoffgewinnung entdeckt

15.05.2015: Wasserstoff gilt als wichtiger Energieträger der Zukunft. Ein Ansatz für die Gewinnung von Wasserstoff ist die Photokatalytische Wasserspaltung. Dabei wird mithilfe von Licht Wasser in seine Bestandteile Wasserstoff und Sauerstoff gespalten. Wissenschaftler des Leibniz-Institutes für Photonische Technologien (IPHT) haben entdeckt, dass bei einer Anregung mit grünem Licht Elektronen direkt vom lichtabsorbierendem Zentrum zum Ort der Spaltung transferiert werden. Je schneller die Elektronen übertragen werden, desto effizienter kann Licht für die Wasserspaltung genutzt werden.

Welche Schritte bei der Wasserspaltung nach Absorption des Lichts stattfinden, wird in molekularen Photokatalysatoren beobachtet. Das genaue Verständnis der einzelnen Schritte der Wasserspaltung ist wichtig, um die Wasserspaltung für die industrielle Verwertung nutzbar zu machen. Besonderes Augenmerk der IPHT-Wissenschaftler liegt auf dem Transfer der Elektronen vom lichtabsorbierenden Zentrum zum Ort der Spaltung. Der Elektronentransfer läuft in einem Zeitfenster unter 1 Pikosekunde ab, also innerhalb von einem Millionsten Teil einer Millionsten Sekunde.

Die Prozesse auf dieser Zeitskala konnten mit vorhandenen Methoden bisher nicht genau untersucht werden. In Kooperation mit Wissenschaftlern der Polytechnischen Universität Mailand, haben IPHT-Wissenschaftler dieses Zeitfenster mit 20 Femtosekunden Zeitauflösung beobachtet. Im Ergebnis stellten sie fest, dass bei Anregung mit grünem Licht die Elektronen vom lichtabsorbierendem Zentrum direkt zum Ort der Spaltung transferiert werden. Bei Anregung mit Licht anderer Wellenlängen dagegen dauert es 1000 mal länger bis die Elektronen transferiert werden. Dies erhöht die Wahrscheinlichkeit für das Auftreten von effizienzmindernden Nebenprozessen. Die zusätzliche Beobachtung kohärenter Schwingungsdynamik, welche exklusiv unter Anregung mit grünem Licht auftritt, illustriert die Effizienz des Prozesses unter diesen Bedingungen.

Originalveröffentlichung:
Ultrafast Intramolecular Relaxation and Wave-Packet Motion in a Ruthenium-Based Supramolecular Photocatalyst; Maria Wächtler et al.; Chemistry – A European Journal, 21/2015

Fakten, Hintergründe, Dossiers

Mehr über IPHT

  • News

    Hochaufgelöste Bilder in drei Dimensionen

    Für die detaillierte Abbildung zellulärer Strukturen und Zellorganellen nutzen Wissenschaftler zunehmend neue hochauflösende Mikroskopiemethoden, die die physikalisch mögliche Auflösungsgrenze scheinbar überwinden. Viele dieser Methoden beleuchten die Proben mit hoher Lichtintensität. Dadur ... mehr

    Künstliche Nervensysteme aus Glasfasern

    Das Leibniz-Institut für Photonische Technologien Jena (Leibniz-IPHT) beteiligt sich mit der Erforschung und Entwicklung optischer Glasfasersensoren an dem EU-Forschungsnetzwerk FINESSE (FIbre NErvous Sensing SystEms). Insgesamt 26 akademische und privatwirtschaftliche Partner aus acht Euro ... mehr

    Biogene Gase und pharmazeutische Wirkstoffe in geringsten Konzentrationen analysieren

    Dr. Torsten Frosch von der Friedrich-Schiller-Universität Jena und dem Leibniz-Institut für Photonische Technologien ist mit dem „Bunsen-Kirchhoff-Preis für analytische Spektroskopie 2016“ ausgezeichnet worden. Der mit 2.500 Euro dotierte und von PerkinElmer gestiftete Preis würdigt herausr ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:



Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.