q&more
Meine Merkliste
my.chemie.de  
Login  

News

Ein Schutzschirm gegen Sauerstoff

Brennstoffzellen auf Basis von Biokatalysatoren werden möglich

© RESOLV

Das Redoxhydrogel wirkt wie ein Schutzschirm vor Sauerstoff.

07.08.2014: Bei der Entwicklung von Brennstoffzellen setzten Generationen von Wissenschaftlern und Ingenieuren auf Katalysatoren auf Edelmetallbasis. Sie sind zwar effizient und stabil, aber leider auch teuer und nur in geringen Mengen verfügbar. Wissenschaftler des Zentrums für Elektrochemie – CES an der Ruhr-Universität Bochum und des Max-Planck-Instituts für Chemische Energiekonversion in Mülheim an der Ruhr haben jetzt ein Konzept entwickelt, um kostengünstigere Biokatalysatoren einzusetzen. Ein Puffer schützt die Katalysatoren dabei vor den lebensfeindlichen Bedingungen in der Brennstoffzelle, die bisher ihre Nutzung unmöglich gemacht hat. Die Forscher berichten in der aktuellen Ausgabe von NATURE Chemistry.

Hydrogenasen: Eine Alternative zu Platin?

Biokatalysatoren für die Wasserstoffherstellung – so genannte Hydrogenasen – kommen auch in der Natur vor. Sie entwickelten sich ausschließlich aus Elementen, die lebenden Organismen zur Verfügung standen, das heißt ohne Edelmetalle. Es entstanden komplexe Hydrogenasen, die ausschließlich gut verfügbare Elemente nutzen, wie Nickel oder Eisen. Die effizientesten Hydrogenasen erreichen die Umsatzrate von Platin, wobei die benötigten Elemente nahezu unbegrenzt zur Verfügung stehen. „Damit sind Hydrogenasen möglichweise eine interessante Alternative zu Edelmetallen“, sagt Prof. Dr. Wolfgang Schuhmann (Lehrstuhl für Analytische Chemie der RUB). Allerdings können Hydrogenasen nicht unter den Bedingungen in einer Brennstoffzelle arbeiten. Spuren von Sauerstoff sowie hohe elektrische Potenziale führen zu ihrer Deaktivierung.

Redoxhydrogele: Schutzschild für effiziente aber sensitive Katalysatoren

Das Team in Bochum und Mülheim entwickelte eine neue Strategie, um empfindliche Katalysatoren trotzdem in Brennstoffzellen betreiben zu können. Die Schlüsselidee dabei ist die Abschirmung des Katalysators durch eine schützende Matrix, deren Eigenschaften spezifisch so entwickelt wurden, dass sie den Deaktivierungsprozess unterbindet. Anstatt nun die Hydrogenase direkt mit der Elektrode in Kontakt zu bringen, soll die Fixierung in einem Redoxhydrogel das Konstrukt schützen. Es ist so beschaffen, dass es gleichzeitig Redoxpuffer und Sauerstofffänger ist. Dadurch wirken in dem Hydrogelfilm weder hohe Potentiale noch Sauerstoff auf den Biokatalysator ein. Unter bestimmten Arbeitsbedingungen kann die mit Hydrogel modifizierte Brennstoffzelle über mehre Wochen chemische Energie aus Wasserstoff in elektrische Energie umwandeln. In Abwesenheit des Hydrogels wird die Hydrogenase innerhalb kürzester Zeit deaktiviert.

Großer Schritt zur nachhaltigen Energiewirtschaft

„Das Hydrogelkonzept eröffnet die Möglichkeit, auch andere empfindliche biologische und künstliche Katalysatoren, deren intrinsische Stabilität nicht verbessert werden kann, in Brennstoffzellen zu nutzen“, so Prof. Wolfgang Lubitz, Direktor vom Max-Planck-Institut für Chemische Energiekonversion. „Das ist ein großer Schritt in Richtung eines erheblich verbesserten Brennstoffzellendesigns und in Richtung einer globalen nachhaltigen Energiewirtschaft in unserer Gesellschaft.“

Fakten, Hintergründe, Dossiers

Mehr über Ruhr-Universität Bochum

  • News

    Neuartige chemische Verbindungen machen Katalysatoren effizienter

    Katalysatoren sollten möglichst stabil, effizient und für bestimmte Anwendungen anpassbar sein. All das ermöglicht diese Bochumer Entwicklung. Neue chemische Verbindungen, die Katalysatoren effizienter machen, hat ein Team vom Lehrstuhl für Anorganische Chemie II der Ruhr-Universität Bochum ... mehr

    Lebende Cyanobakterien-Elektrode stellt effizient Strom her

    Eine mit lebenden Cyanobakterien beschichtete Elektrode eignet sich, um lichtgetrieben und effizient Strom zu produzieren. Das berichtet ein deutsch-israelisches Forscherteam in der Zeitschrift „Nature Communications“. Im Gegensatz zu früheren Studien mussten die Wissenschaftler zu ihrem Sy ... mehr

    Oberflächen und Proteinverteilung von Zellen gleichzeitig sehen

    Wissenschaftler der Ruhr-Universität Bochum (RUB) haben erstmals zwei mikroskopische Methoden kombiniert, die sowohl die Oberfläche einer Zelle als auch die Verteilung eines Proteins in der Zelle mit einer Auflösung im Nanometerbereich sichtbar machen können. Die Verfahren können für lebend ... mehr

  • q&more Artikel

    Vibrationsspektroskopie - Labelfreies Imaging

    Spektroskopische Methoden erlauben heute mit bisher unerreichter räumlicher und zeitlicher Auflösung tiefe Einblicke in die Funktionsweise biologischer Systeme. Neben der bereits sehr gut etablierten Fluoreszenzspektroskopie wird in den letzten Jahren das große Potenzial der labelfreien Vib ... mehr

  • Autoren

    Prof. Dr. Klaus Gerwert

    Jg. 1956, studierte Physik in Münster und promovierte 1985 in biophysikalischer Chemie in Freiburg. Nach Stationen am Max-Planck-Institut für Molekulare Physiologie in Dortmund und am Scripps Research Institute in La Jolla, USA erhielt er 1993 einen Ruf auf die C4-Professur für Biophysik ... mehr

Mehr über Max-Planck-Institut für chemische Energiekonversion

  • News

    Zwischenstufe im Katalysezyklus des Photosystem II identifiziert

    Die aktuellsten Forschungsergebnisse von Wissenschaftlern des MPI CEC, die die Wasseroxidationsreaktion erforschen, wurden als Cover-Artikel für die erste Ausgabe des Fachjournals Chemical Science im Jahr 2016 ausgewählt. Mit Hilfe theoretischer Chemie und Spektroskopie konnten Forscher in ... mehr

    Effiziente Produktion von Wasserstoff durch Algen

    Mikroalgen brauchen für die Produktion von Wasserstoff lediglich Licht und Wasser. Die Effizienz der Mikroalgen für die Wasserstoffproduktion ist allerdings gering und muss noch um 1-2 Größenordnungen gesteigert werden bevor ein biotechnologisches Verfahren interessant werden könnte. Wissen ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:



Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.