q&more
Meine Merkliste
my.chemie.de  
Login  

News

Weiteres Puzzlestück im Selbstreinigungsprozess der Zelle entdeckt

© Dorotea Fracchiolla, Eleonora Turco

Illustration der Verpackung des zellulären Mülls durch die wachsende Membran des Autophagosome sowie der Kralle des FIP200 Proteins.

11.03.2019: Zellen befinden sich in einem ständigen Prozess der Erneuerung und Säuberung, mithilfe dessen sie zellulären Müll entsorgen. Die so genannte Autophagie stellt sicher, dass der gesamte Organismus gesund bleibt. Dabei sind verschiedenste Akteure in der Zelle involviert, was eine perfekte Kommunikation voraussetzt. Ein internationales Team unter der Leitung von Sascha Martens, Gruppenleiter an den Max F. Perutz Laboratories, unter Beteiligung von ForscherInnen des Max-Delbrück-Centrums für Molekulare Medizin und der Universität von Berkeley, beschreiben nun erstmals wie zwei wesentliche Akteure der Autophagie kommunizieren und somit das korrekte Funktionieren der Zellreinigung sicherstellen.

Neben anderen Faktoren spielen vor allem die Proteine p62 und FIP200 eine wichtige Rolle. FIP200 hilft der Zelle das Autophagosom zu bilden, eine Art Müllsack, in dem zellulärer Abfall eingeschlossen wird. Das Protein p62 sammelt und bereitet das nicht benötigte Material vor, sodass sich das Autophagosom um den Abfall bilden kann. Bisher war eine Verbindung der beiden Proteine unbekannt. Die ForscherInnen haben nun entdeckt, wie die zwei Akteure auf molekularer Ebene miteinander kommunizieren. Eine Störung dieser Kommunikation beeinträchtigt auch den weiteren Prozess der Autophagie. Mit Strukturanalysen konnte das Team auch zeigen, dass Teile des Proteins FIP200 wie eine "Kralle" geformt sind. Ähnlich wie ein Arbeiter einen Müllsack greifen würde, interagiert diese "Kralle" mit p62 und dem angesammelten Zellmaterial.

Erstautorin Eleonara Turco beschreibt den Forschungsansatz im Detail: "Mit verschiedensten Techniken der Biochemie, Strukturbiologie und Zellbiologie konnten wir die Interaktion zwischen p62 und FIP200 aufzeigen. Wir haben entdeckt, dass p62 nicht nur zellulären Müll erkennt und vorbereitet, sondern durch die Interaktion mit FIP200 die Maschinerie der Autophagie in Gang setzt, die zur Ausbildung des Autophagosoms und damit dem Abbau des Materials führt."

"Zusammen mit unseren Kollegen konnten wir zeigen, dass die FIP200 'Kralle' eine Tasche besitzt, die sich mit Teilen von p62 verbindet. Damit ist eine lange gesuchte Verbindung zwischen der Sammlung des Materials und dem Abbau durch Autophagie entdeckt", fasst Sascha Martens die Bedeutung der Ergebnisse zusammen.

Störungen in der Autophagie beim Menschen führen zu verschiedensten Krankheiten, da sich fehlerhafte Proteine und anderes gefährliches Material in der Zelle ansammeln. Mutationen im Protein p62 verursachen unter anderem neurodegenerative Erkrankungen. Ein besseres Verständnis der Prozesse hinter Autophagie kann daher langfristig auch helfen die Entstehung bestimmter Erkrankungen beim Menschen zu verstehen.

Originalveröffentlichung:
Eleanora Turco, Marie Witt, Christine Abert, Tobias Bock-Bierbaum, Ming-Yuan Su, Riccardo Trapannone, Martin Sztacho, Alberto Danieli, Xiaoshan Shi, Gabriele Zaffagnini Annamaria Gamper, Martina Schuschnig, et al.; "FIP200 Claw Domain Binding to p62 Promotes Autophagosome Formation at Ubiquitin Condensates."; Molecular Cell.

Fakten, Hintergründe, Dossiers

  • Autophagie
  • Zellbiologie
  • Universität Wien

Mehr über Universität Wien

  • News

    Verbesserte Pharmazeutika dank Fluor

    Die Entwicklung und Verbesserung von Pharmazeutika spielt eine zentrale Rolle im fortlaufenden Kampf gegen Krankheiten. Die organische Chemie ermöglicht diesen Fortschritt, indem sie Methoden bereitstellt, mit denen man chemische Strukturen verändern kann. Ein Forscherteam um Chemiker Nuno ... mehr

    Die RNA als Mikrochip

    Ribonukleinsäure (RNA) zählt neben DNA und Protein zu den drei primären biologischen Makromolekülen und war wahrscheinlich auch das erste, welches den frühen Formen des Lebens entsprang. Laut RNA-Welt-Hypothese ist RNA in der Lage, aus sich selbst heraus Leben hervorzubringen, Informationen ... mehr

    Nanokäfige im Labor und im Computer

    Nanokäfige sind hochinteressante molekulare Strukturen mit Hohlräumen, die z.B. in der Medizin als Träger kleinerer Moleküle genutzt werden können. Kurze Abschnitte des DNA-Moleküls sind perfekte Kandidaten für das kontrollierbare Design neuartiger Nanokäfige, der DNA-basierten Dendrimere. ... mehr

  • q&more Artikel

    Superfood & Alleskönner?

    Egal, ob die Web-Community abnehmen oder sich gesund ernähren will, Chia, das Superfood, ist immer dabei und gilt manchen als „Alleskönner“. Einschlägige Internet-Foren kommunizieren die verschiedensten Rezepte von Chia-Pudding und Chia Fresca, gefolgt von solchen für Muffins und sogar Marm ... mehr

  • Autoren

    Prof. Dr. Susanne Till

    Jg. 1955, ist Universitätslehrerin und seit über 30 Jahren am Department für Ernährungswissenschaften der Universität Wien. Schwerpunkte in der Lehre der promovierten Biologin (Hauptfach Botanik) sind Botanik und Biologie, Gewürze und einheimische Wildpflanzen in der Humanernährung sowie Qu ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:



Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.