q&more
Meine Merkliste
my.chemie.de  
Login  

News

Erbkrankheit mittels Genkorrektur geheilt

Copyright: Colourbox

Forscher entwickelten basierend auf der Crispr-Cas-Methode ein Werkzeug, um schadhafte Gene gezielt zu korrigieren.

10.10.2018: Ein Forschungsteam der ETH Zürich und des Kinderspitals Zürich haben ein neu entwickeltes Korrekturwerkzeug angewandt, um Gen-Mutationen gezielt zu korrigieren. Damit heilten die Wissenschaftler Mäuse, die an einer vererbbaren Stoffwechselkrankheit litten, die auch Menschen betrifft.

Die Stoffwechselkrankheit Phenylketonurie dürfte frischgebackenen Eltern ein Begriff sein: In der Schweiz wird jedes neugeborene Kind auf diese Erbkrankheit getestet. Ist es davon betroffen, muss es mit einer speziellen Diät ernährt werden, damit sich die Aminosäure Phenylalanin aus der Nahrung nicht im Körper anreichern kann. Ein Übermass an Phenylalanin verzögert die geistige und motorische Entwicklung. In schlimmen Fällen erleiden Betroffene massive geistige Behinderungen.

Die Ursache für die Stoffwechselstörung ist eine Mutation auf dem Gen, das den Bauplan für das Enzym namens Phenylalanin-Hydroxylase (PAH) darstellt. Dieses Enzym, welches von Leberzellen hergestellt wird, baut Phenylalanin um. Die Krankheit ist sogenannt autosomal rezessiv: Das Kind erkrankt dann, wenn es von der Mutter und vom Vater je ein mutiertes Gen vererbt bekommen hat. Heilbar ist diese Krankheit bisher nicht.

Erweiterung des Crispr/Cas9-Systems

Ein Forschungsteam um ETH-Professor Gerald Schwank hat nun aber eine Methode zunutze gemacht, um beide mutierten Gene in Leberzellen zu korrigieren und damit die Krankheit zu heilen. Zumindest in Mäusen ist dies gelungen.

Mithilfe eines um ein Enzym erweitertes Crispr/Cas9-Systems änderten die Forschenden in erwachsenen Mäusen gezielt die Abfolge der DNA-Bausteine des entsprechenden Gens. Infolgedessen konnten die Leberzellen wieder funktionierende PAH-Enzyme herstellen. Die Mäuse waren geheilt.

Im Detail: Der um eine sogenannte Cytidin-Deaminase erweiterte Crispr/Cas9-Komplex bindet an die zu korrigierende Stelle des Gens und öffnet lokal die beiden Stränge der DNA. Die Deaminase wandelt das krankheitsverursachende DNA-Basenpaar C-G in das in gesunden Individuen vorkommende Basenpaar T-A um. Der Fehler in der DNA-Bausteinabfolge wird so korrigiert.

Bei der klassischen Crispr/Cas-Editierung ist die Induktion eines DNA-Doppelstrangbruches das zentrale Element für die Genkorrektur. An einer definierten Stelle wird der Doppelstrang zerschnitten, und die Zelle versucht den Schnitt mittels verschiedener Mechanismen zu reparieren. Falls der Zelle eine passende DNA-Sequenz von aussen zugefügt wird, erlaubt es ein spezieller Reparaturmechanismus eine Gensequenz gezielt zu verändern.

Das Problem dabei ist, dass die meisten menschlichen Zellen hauptsächlich andere Mechanismen verwenden, welche zusätzliche ungezielte Mutationen erzeugen.

Schonendes Genediting

Die Forscher konnten feststellen, dass das neues Gen-Editierwerkzeug sehr viel effizienter ist als die klassische Crispr/Cas9 Methode: Bis zu 60 Prozent aller fehlerhaften Genkopien in der Mäuseleber wurden korrigiert. Dies führte dazu, dass die Phenylalanin-Konzentration auf die Normalwerte sank, und Tiere nach der Behandlung mit dem Gen-Editierwerkzeug keine Krankheitsanzeichen mehr zeigten.

Um den genetischen Code für das neue Korrekturwerkzeug in die Leberzellen zu transferieren, bauten die Forscher die dazu nötigen Gene in Adeno-assoziierte Viren ein und spritzten diese den Mäusen ins Blut. Das Virus infizierte darauf die Leberzellen und schleuste dabei die Gene für das Editierwerkzeug in die Leberzelle.

Weitere Stoffwechselkrankheiten heilen

«Dieser Ansatz hat ein hohes Potenzial für Anwendungen im Menschen», sagt Gerald Schwank. Allerdings sei die vorliegende Studie erst ein Machbarkeitsbeweis. Klinische Studien müssten folgen, um die Wirksamkeit des neuen Gen-Editierwerkzeugs in anderen Tieren und dereinst auch im Menschen zu prüfen.

Bisherige Methoden der Gen-Editierung waren nur mässig erfolgreich darin, Mutationen direkt in Tieren gezielt zu korrigieren. In der Leber von erwachsenen Mäusen lag die Korrekturrate bislang bei wenigen Prozent, erklärt Schwank. «Wir haben hier ein Vielfaches erreicht – das hat bisher noch niemand geschafft.»

Risiken hält Schwank für gering. Die Forscher haben im Mausmodell nach Anwendung des Editierwerkzeugs nach ungezielten Mutationen gesucht, also solche an Stellen, wo keine sein sollten. Fündig wurden sie nicht. In einer Folgestudie möchte er diese Frage nun noch eingehender untersuchen. «Die menschliche Leber besteht aus mehreren Milliarden Zellen. Keine davon darf nach der Editierung Mutationen aufweisen, die zu Tumoren führen», betont Schwank. Man müsse auch untersuchen, ob das Adeno-assoziierte Virus, welches die Forscher als Transportvehikel für die Editierwerkzeug-Gene einsetzen, unerwünschte Effekte verursache.

Weiter Stoffwechselkrankheiten im Fokus

«Der Einsatz eines Basen-Editors war der Schlüssel zum Erfolg», freut sich auch Schwanks Doktorand und Studien-Erstautor Lukas Villiger. Diese wurden am Massachussetts Institute of Technology (MIT) entwickelt und erst vor zwei Jahren in einer Fachpublikation vorgestellt. Zuvor arbeiteten die ETH-Forscher mit klassischen Crispr/Cas-Ansätzen. Nach 2016 nutzten Schwank und Villiger die Technik der US-Forschenden. «Der Weg war trotz den neuen Basen-Editoren nicht gradlinig, wir mussten ziemlich viel herumtüfteln», sagt Villiger. Die grösste Überraschung sei gewesen, dass dieses System so viel effizienter sei als die klassische Crispr/Cas-Werkzeugkiste.

Schwank sucht nun Finanzmittel, um Versuche an anderen Tiermodellen wie Schweinen durchführen zu können. «Die Mausleber unterscheidet sich in der Grösse und der Architektur von der des Menschen oder von Schweinen, weshalb wir unsere Versuche unbedingt auf einen anderen Organismus ausdehnen müssen um weiterzukommen.» Die Phenylketonurie ist nicht die einzige erbliche Stoffwechselerkrankung der Leber.

Genetisch bedingte Störungen des Harnstoffwechsels führen zum Beispiel dazu, dass der Körper Ammonium (als Abfallprodukt aus stickstoffhaltigen Nahrungsmitteln) nicht aus dem Blut entfernen und zu Harnstoff abbauen kann. Dies führt vor allem zu Störungen im Zentralnervensystem. Die einzige derzeitig verfügbare Möglichkeit zur Heilung ist eine Lebertransplantation. Schwank möchte deshalb das neu entwickelte Gen-Editierwerkzeug auch bei solchen Erbkrankheiten testen.

Originalveröffentlichung:
Villiger L, Grisch-Chan HM, Lindsay H, Ringnalda F, Pogliano CB, Allegri G, Fingerhut R, Häberle J, Matos J, Robinson MD, Thöny B, Schwank G.; "Treatment of a metabolic liver disease by in vivo genome base editing in adult mice"; Nature Medicine; 2018, Oct 8th.

Fakten, Hintergründe, Dossiers

  • Erbkrankheiten
  • Genmutationen
  • Stoffwechselkrankheiten
  • CRISPR/Cas9
  • CRISPR
  • Phenylalanin
  • Stoffwechselstörungen
  • Geneditierung
  • Phenylketonurie

Mehr über ETH Zürich

  • News

    Massgeschneiderte Emulsionen

    ETH-Materialforscher entwickeln ein Verfahren, mit dem sie Tröpfchen in einer Emulsion gezielt und kontrolliert mit Partikeln ummanteln können, um sie zu stabilisieren. Damit erfüllen sie einen lang gehegten Wunsch von Forschung und Industrie. Mayonnaise ist ein Paradebeispiel für eine Emul ... mehr

    Bodenmikroben bauen Kunststofffolie ab

    Dünne Mulch-Folien aus Polyethylen werden in vielen Ländern im Ackerbau eingesetzt und verschmutzen dort Böden massiv. Nun zeigen Forscher der ETH Zürich und der Eawag auf, dass es Alternativen gibt: Folien aus dem Kunststoff PBAT werden im Boden biologisch abgebaut. Unsere Welt ertrinkt in ... mehr

    Kälte führt zu schlanken Nachkommen

    Kälte vor der Zeugung führt bei Nachkommen zu mehr braunem Fettgewebe und schützt diese vor Übergewicht und Stoffwechselerkrankungen. Informationsüberträger sind die Spermien, wie Wissenschaftler bei Mäusen herausfanden. Ein ähnlicher Zusammenhang zeigt sich auch bei Menschen. Wer viel brau ... mehr

  • q&more Artikel

    Analytik in Picoliter-Volumina

    Zeit, Kosten und personellen Aufwand senken – viele grundlegende sowie angewandte analytische und diagnostische Herausforderungen können mit Lab-on-a-Chip-Systemen realisiert werden. Sie erlauben die Verringerung von Probenmengen, die Automatisierung und Parallelisierung von Arbeitsschritte ... mehr

    Investition für die Zukunft

    Dies ist das ganz besondere Anliegen und gleichzeitig der Anspruch von Frau Dr. Irmgard Werner, die als Dozentin an der ETH Zürich jährlich rund 65 Pharmaziestudenten im 5. Semester im Praktikum „pharmazeutische Analytik“ betreut. Mit Freude und Begeisterung für ihr Fach stellt sie sich imm ... mehr

  • Autoren

    Prof. Dr. Petra S. Dittrich

    Jg. 1974, ist Außerordentliche Professorin am Department Biosysteme der ETH Zürich. Sie studierte Chemie an der Universität Bielefeld und Universidad de Salamanca (Spanien). Nach der Promotion am Max-Planck-Institut für biophysikalische Chemie in Göttingen war sie Postdoktorandin am ISAS In ... mehr

    Dr. Felix Kurth

    Jg. 1982, studierte Bioingenieurwesen an der Technischen Universität Dortmund und an der Königlich Technischen Hochschule in Stockholm. Für seine Promotion, die er 2015 von der Eidgenössisch Technischen Hochschule in Zürich erlangte, entwickelte er Lab-on-a-Chip Systeme und Methoden zur Qua ... mehr

    Lucas Armbrecht

    Jg. 1989, studierte Mikrosystemtechnik an der Albert-Ludwigs Universität in Freiburg im Breisgau. Während seines Masterstudiums konzentrierte er sich auf die Bereiche Sensorik und Lab-on-a-Chip. Seit dem Juni 2015 forscht er in der Arbeitsgruppe für Bioanalytik im Bereich Einzelzellanalytik ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:



Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.