q&more
Meine Merkliste
my.chemie.de  
Login  

News

Gene aus dem Nichts

Vorläufer von Genen entstehen permanent "aus dem Nichts" – und verschwinden meist wieder

DasWortgewand, pixabay.com, CC0

Symbolbild

13.09.2018: Studien der jüngsten Zeit gaben vermehrt Hinweise darauf, dass sich neue Gene auch spontan neu bilden können, also nicht schrittweise durch kleine Veränderungen bewährter Gene entstehen. Bioinformatiker der Westfälischen Wilhelms-Universität Münster untersuchten nun erstmals auch die frühesten Stadien der Entstehung dieser "Gene aus dem Nichts".

Die Evolution von Organismen erfolgt in kleinen Schritten – so haben die meisten Menschen es in der Schule gelernt: durch kleine genetische Veränderungen, Punktmutationen genannt. Im Laufe der Generationen treten diese Mutationen in den Kopien der bewährten Gene auf und bringen möglicherweise nützliche neue Eigenschaften mit sich. Dass vollständige neue Gene und somit neue Eigenschaften quasi aus dem Nichts entstehen, galt jahrzehntelang als undenkbar. Erst Studien der jüngsten Zeit gaben vermehrt Hinweise darauf, dass sich neue Gene auch „aus dem Nichts“ in der sogenannten nicht-codierenden DNA bilden, also in dem Teil des Erbguts, der keine Proteine erzeugt. Eine neue Arbeit untersucht nun erstmals auch die frühesten Stadien der Entstehung dieser „Gene aus dem Nichts“. Die Arbeit, die aktuell in der Fachzeitschrift „Nature Ecology and Evolution“ veröffentlicht ist, haben Bioinformatiker um Prof. Dr. Erich Bornberg-Bauer vom Institut für Evolution und Biodiversität der Westfälischen Wilhelms-Universität Münster (WWU) durchgeführt.

Das Team verglich mit Computeranalysen Anzahl, Länge, Position und Zusammensetzung (Nukleotid-Sequenz) von „Genen aus dem Nichts“ beim Menschen mit denen von vier anderen Säugetier-Arten: Maus, Ratte, Kängururatte und Opossum. Letzteres gehört zu den Beuteltieren, deren Evolutionslinie sich früh von dem Zweig der Höheren Säugetiere abgespalteten hat. Durch diesen Vergleich warfen die Forscher Schlaglichter auf 160 Millionen Jahre Evolution der Säugetiere. Die Wissenschafter nahmen dabei DNA-Transkripte unter die Lupe, also solche DNA-Abschnitte, die aktiv sind und als RNA-Kopie vorliegen. Genauer gesagt untersuchten die Forscher die Transkripte sogenannter offener Leserahmen. Diese Sequenzen dienen häufig als Bauanleitungen für Proteine.

„Unsere Studie zeigt: Neue offene Leserahmen, also die Kandidaten für Bauanleitungen für neue Proteine, entstehen in nicht-codierenden DNA-Regionen permanent ‚aus dem Nichts‘. Sie gehen aber genauso wie ihre Transkripte im Laufe der Evolution auch sehr schnell wieder verloren“, sagt Bioinformatiker Erich Bornberg-Bauer. Obwohl aus nur sehr wenigen dieser Kandidaten tatsächlich funktionstüchtige Gene entstehen, also solche Gene, die den Bauplan für funktionierende Proteine enthalten, bleiben einige Kandidaten zufällig über längere Zeit erhalten – allein aufgrund der enormen Anzahl an ständig neu erzeugten Transkripten. „Diese Transkripte können dann in mehreren Abstammungslinien gefunden werden“, so Erich Bornberg-Bauer. „Wahrscheinlich können sie über lange Zeiträume hinweg das Repertoire der bestehenden Proteine ergänzen und an das molekulare Wechselspiel mit diesen angepasst werden.“

Manchmal übernimmt also ein „aus dem Nichts“ entstandenes Protein eine Funktion im Organismus. „Damit haben wir auch eine Erklärung dafür, wie grundlegend neue Eigenschaften in einem Organismus entstehen können. Allein durch punktuelle Veränderungen der genetischen Struktur ist das nämlich nicht erklärbar“, so Erich Bornberg-Bauer.

Originalveröffentlichung:
Jonathan F. Schmitz, Kristian K. Ullrich and Erich Bornberg-Bauer; "Incipient de novo genes can evolve from frozen accidents which escaped rapid transcript turnover"; Nature Ecology and Evolution; 10 September 2018

Fakten, Hintergründe, Dossiers

  • Gene
  • Evolution
  • nicht-codierende DNA

Mehr über WWU Münster

  • News

    Neue Methode zur beschleunigten Bestimmung von Antibiotikaresistenzen

    Atemwegs-, Harnwegs- oder Wundinfektion, Sepsis: Die Liste der typischerweise durch multiresistente Keime ausgelösten Erkrankungen ist lang, deren Verlauf oft schwer oder gar tödlich. Therapeutischer Königsweg sind exakt auf den krank machenden Erreger zugeschnittene Antibiotika, doch genau ... mehr

    Zellen auf Wanderschaft

    Entwickelt sich ein Organismus, wandern Millionen von Zellen von Ort zu Ort, um an den richtigen Stellen Gewebe und Organe zu bilden. Um sich fortbewegen zu können, bilden manche Zellen Auswölbungen in Form von Bläschen, die in die Richtung zeigen, in die sie wandern. Wie ein Luftballon seh ... mehr

    Durchbruch: Neues Verfahren zur Synthese von fluorierten Molekülringen

    Farben, Medikamente und funktionale Materialien – solche Produkte basieren häufig auf innovativen, von Chemikern entwickelten Molekülen. Zu ihrer Herstellung stehen den Experten viele chemische Reaktionen zur Verfügung – allerdings mit Einschränkungen. Beispielsweise sind fluorierte Verbind ... mehr

  • q&more Artikel

    Alternativen zum Tierversuch?

    Die Aufklärung des Metabolismus potenzieller neuer Wirkstoffe ist eine der großen Herausforderungen in der pharmazeutischen Forschung und Entwicklung. Sie ist in der Regel sehr zeitaufwändig und kostenintensiv. Klassische Ansätze basieren dabei im Wesentlichen auf In-vivo-Experimenten mit L ... mehr

    Ausdrucksstark

    Biologische Moleküle an Oberflächen zu koppeln und in dieser Form für Messverfahren, zur Analytik oder in Produktionsprozessen einzusetzen, ist ein innovativer Ansatz, der in industriellen Anwendungen zunehmend Bedeutung gewinnt. In gängigen Verfahren werden Oberflächen und biologische Mole ... mehr

  • Autoren

    Dr. Martin Vogel

    Martin Vogel, geb. 1973, hat Chemie studiert und an der Universität Münster in analytischer Chemie promoviert. Nach seiner Promotion ging er für einige Jahre an die Universität Twente in Enschede (Niederlande). Seit 2006 ist er wissenschaftlicher Mitarbeiter am Institut für Anorganische und ... mehr

    Prof. Dr. Joachim Jose

    Joachim Jose, geb. 1961, studierte Biologie an der Universität Saarbrücken, wo er promovierte. Die Habilitation erfolgte am Institut für Pharma­zeutische und Medizinische Chemie der Universität des Saarlandes. Von 2004 bis 2011 war Professor für Bioanalytik (C3) an der Heinrich-Heine-Univer ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:



Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.