q&more
Meine Merkliste
my.chemie.de  
Login  

News

Laser mustern Lotuseffekt auf Flugzeuge

Schluss mit Reinigen: Wasser- und schmutzabweisende Nanostrukturen auf Flugzeugoberflächen

© Fraunhofer IWS Dresden

Alfredo Aguilar, Wissenschaftler im Team Oberflächenfunktionalisierung am Fraunhofer IWS, bedient das weltweit größte 3D-DLIP-System, das seinen Standort an der TU Dresden hat.

13.08.2018: Filigrane Gravuren auf Außenflächen von Flugzeugen sollen sicherstellen, dass die Luftströmung glatt bleibt und so den Luftwiderstand des Flugzeugs gering hält. Dafür haben Ingenieure am Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS, an der Technischen Universität Dresden und bei Airbus ein Laserverfahren entwickelt, das strukturierte Oberflächen mit hohem Durchsatz erzeugt, das die Oberflächenkontamination erschwert.

Das europäische Projekt »Laser4Fun«, an dem das Fraunhofer IWS und Airbus mitarbeiten, zielt auf spürbare Vorteile für Fluggesellschaften und Passagiere ab: mit bloßem Auge kaum sichtbare Nanostrukturen auf ausgewählten Tragflächen sollen Wasser, Insekten, Schmutz und generell unerwünschte Verunreinigungen abweisen.

Verschmutzungen auf Flugzeugoberflächen vermeiden

»Mit unserem Verfahren wollen wir jede Form der Verunreinigung von Flugzeugoberflächen vermeiden«, sagte Dr. Tim Kunze, der die Gruppe Oberflächenfunktionalisierung am IWS leitet. »Es wäre aber auch schon ein Erfolg, wenn es wenigstens hemmen können.« Das könnte beispielsweise mit mikro- und nanostrukturierten Oberflächen geschehen. Der aktuelle Stand der Technik ist jedoch, dass die Strukturierung mit anderen Technologien kombiniert werden muss. Nicht so bei der IWS-Lösung. Um zu verstehen, was sich die Fraunhofer-Ingenieure zum Wasser- und Schmutzabweisen ausgedacht haben, ist die Erinnerung an den Physikunterricht hilfreich: Ein Lichtstrahl, der einen Doppelspalt passiert, bildet ein periodisches Muster aus hellen und dunklen Linien – ein sogenanntes "Interferenzmuster".

Laserinterferenzmuster ritzen Säulen und Gräben in Titan ein

Solch ein Interferenzmuster erzeugen die neuen DLIP-Optikmodule aus Dresden. »DLIP« steht dabei für »Direct Laser Interference Patterning« und bedeutet übersetzt so viel wie »direkte Interferenzmuster-Erzeugung durch Laser«. Spezielle Optiken teilen einen Laserstrahl in mehrere Teilstrahlen auf, die später zum Strukturieren auf der Materialoberfläche zusammengeführt werden. Mit diesem Trick lassen sich sehr präzise und kontrollierbare Lichtmuster erzeugen. Wird das Interferenzmuster auf ein Titanblech fokussiert, schmilzt das hochenergetische Laserlicht und trägt das Material in den hellen Bereichen ab, während es das Material in den dunklen unbeeinflusst lässt. Dadurch erzeugen die Wissenschaftler von Fraunhofer IWS und TU-Dresden auf der Titan-Oberfläche winzig kleine Strukturen, die – unterm Mikroskop betrachtet – zum Beispiel Säulenhallen oder Wellblech-Dächern ähneln. Die Abstände zwischen den Säulen lassen sich frei zwischen 150 Nanometer (Millionstel Millimeter) und 30 Mikrometer (Tausendstel Millimeter) einstellen. Das Ziel: Durch die Nano- und Mikrostrukturen auf dem Metall können sich Wassertropfen nicht mehr auf der Oberfläche breitmachen und anheften. Weil sie nicht genug Kontakt auf der Oberfläche finden, rollen oder rutschen sie ab. Dieser Effekt ist der Natur entlehnt und ist seit vielen Jahren als »Lotus-Effekt« bekannt.

Bisherige Lotus-ähnliche Beschichtungen altern schnell und sind teils unverträglich mit neuen Umweltrichtlinien

Solche »superhydrophoben« (also wasserabweisenden) Oberflächen wurden auch schon mittels anderer Technologien erzeugt. Die meisten Lotus-ähnlichen Effekte auf Blechen, Brillen oder Bad-Armaturen werden heute noch durch spezielle Beschichtungen erzeugt. Als Hauptvorteil der Beschichtungsmethode galt bisher, dass sich effizient große Flächen damit behandeln ließen. Die Beschichtungen altern jedoch mit der Zeit, können leicht beschädigt werden und entsprechen teilweise nicht den neuen EU-Umweltvorschriften. Die mit der DLIP-Methode hergestellten Strukturen können jedoch durchaus über Jahre hinweg Bestand haben und werfen keine Umweltprobleme auf.

Tempo-Nachteil mit Weltrekord überwunden

Lotuseffekt-Nanostrukturen ließen sich zwar mit der Lasertechnologie erzeugen, aber nur sehr langsam: Der Laserstrahl musste wie ein Bleistift jede Nut bzw. jede Säule nacheinander »zeichnen«. Für eine große Tragfläche zum Beispiel hätte das viel zu lange gedauert. Dank der Interferenz-Technologie konnten die Entwickler von Fraunhofer und TU Dresden das Bearbeitungstempo deutlich steigern: Je nachdem ob Titan, Polymere oder andere Werkstoffe zu strukturieren sind, kommen die DLIP-Optiken auf fast einen Quadratmeter pro Minute. »Das ist ein Weltrekord«, betont Prof. Andrés Lasagni, der bis 2017 den Grundstein der Arbeitsgruppe am Fraunhofer IWS legte und nun Inhaber der Professur für Laserbasierte Methoden der großflächigen Oberflächenstrukturierung ist. »Zusammen mit unserem IWS-Kollegen haben wir das weltweit größte DLIP-System entwickelt, das heute an der TU Dresden aufgebaut ist. Das von der Exzellenzinitiative der Deutschen Forschungsgesellschaft (DFG) geförderte System, ermöglicht das Behandeln großer Flächen mit einem hohen Durchsatz. Darüber hinaus lassen sich die DLIP-Laserköpfe in handelsübliche Industriemaschinen integrieren, sodass heute auch mittelständische Unternehmen auf diese Technologie zugreifen können.«

Flugversuche mit den Dresdner Lotus-Effekt-Beschichtungen

All dies empfiehlt die neue Technologie, die gemeinschaftlich vom Fraunhofer IWS und der TU Dresden für die Luftfahrt-Industrie entwickelt wurde. Airbus-Ingenieure testen daher nun auf diese Weise nanostrukturierte Tragflächen auf einem Flugzeug in der Praxis. »Wir haben dafür eine Titan-Testfläche mit unserer Säulenstruktur versehen«, berichtet Tim Kunze. Nun muss die von DLIP hergestellte Beschichtung ihr Potenzial in der Praxis unter Beweis stellen. Elmar Bonaccurso, Materialwissenschaftler bei Airbus Central R&T, sagt es so: »Flugtests unter verschiedenen Betriebsbedingungen und regelmäßige Beschichtungsinspektionen sind besonders nützlich, um die Haltbarkeit und Funktionalität solcher wasser- und schmutzabweisenden Beschichtungen zu untersuchen, die sich im Labor bereits sehr gut bewährt haben.«

Laserstruktur-Siegel machen Fälschern das Leben schwer

Derweil loten die Dresdner Fraunhofer- und TU-Dresden-Ingenieure schon weitere Anwendungen für ihre Lotus-ähnliche Nanostrukturen aus. Denn die können nicht nur wasserabweisende Oberflächen erzeugen, sondern auch dafür sorgen, dass Wasser oder andere Flüssigkeiten ausgewählte Areale benetzen und so »hydrophil« oder »lyophil« werden. Auch schwer kopierbare Sicherheitssiegel lassen sich erzeugen. So kann diese Technologie beispielsweise zur Kennzeichnung fälschungssicherer Nummernschilder oder zur Erhöhung der Biokompatibilität von Zahnimplantaten eingesetzt werden. »Richtig strukturierte Implantatschrauben könnten vom Körper besser akzeptiert werden«, hofft Prof. Lasagni. »Und das würde weniger Komplikationen für den Patienten bedeuten.«

Fakten, Hintergründe, Dossiers

  • Verunreinigungen
  • Interferenzmuster
  • Lasertechnik
  • Oberflächenstrukturen
  • Mikrostrukturen
  • Lotus-Effekt

Mehr über Fraunhofer-Institut IWS

  • News

    Künstliche Mini-Organismen statt Tierversuche

    Alle wollen Medikamente – da reden wir nicht über Tierversuche. Diese sind in der medizinischen Forschung bislang ein notwendiges Übel. Eine vielversprechende Alternative sind mikrophysiologische Systeme, in denen Organe und Organsysteme »nachgebaut« werden. Komplexe Mechanismen des menschl ... mehr

    Verringerte Prozesskosten bei der Elektrodenherstellung

    Die intensiven Forschungsarbeiten des Fraunhofer-Instituts für Werkstoff- und Strahltechnik IWS Dresden zur Reduzierung der Fertigungskosten bei der Batteriezellenfertigung liefern beeindruckende Ergebnisse. Im Rahmen des vom BMBF geförderten Forschungsprojektes DryLIZ (KIT 02PJ2302) konnte ... mehr

    Röntgenlinsen für die Nanoanalytik

    Fortschritte in der Nanotechnologie sind nur dann möglich, wenn sich auch die analytischen Verfahren zur Charakterisierung von Nanostrukturen stetig verbessern. Aufgrund der geringen Abmessungen der zu untersuchenden Strukturen lässt sich sichtbares Licht für die Nanoanalytik nicht mehr nut ... mehr

Mehr über Fraunhofer-Gesellschaft

  • News

    Passgenaue Knochenimplantate aus dem Drucker

    Tumorerkrankungen, Infektionen oder schwere Frakturen können die operative Entfernung von Knochen und den Einsatz von Implantaten notwendig machen. Fraunhofer-Forscher haben jetzt in Zusammenarbeit mit europäischen Partnern ein Verfahren entwickelt, mit dem sich Knochenimplantate aus einem ... mehr

    Zebrafischeier dank Maschinellem Lernen automatisch sortieren

    Zebrafische besitzen fast alle Gene, die Menschen auch haben. Daher eignen sich ihre Eier als Modellorganismus für die Gen- und Wirkstoffforschung. Die Probenvorbereitung erfolgt bislang manuell – ein zeitaufwändiger Prozess. Eine neue Technologie vereinzelt und sortiert die Fischeier mithi ... mehr

    Oberflächen mit Highspeed veredeln

    Präzise und gut, aber zu langsam – so lassen sich die meisten Laserverfahren für die Oberflächenbearbeitung beschreiben. Im EU-Forschungsprojekt ultraSURFACE entwickelt das Fraunhofer-Institut für Lasertechnik ILT aus Aachen zusammen mit neun internationalen Partnern bis zum Ende des Jahres ... mehr

Mehr über TU Dresden

  • News

    Elastisch wie Gummi, viskos wie Honig: Immunzellen anhand mechanischer Eigenschaften unterscheiden

    Unterschiedliche Typen von Immunzellen voneinander zu unterscheiden, ohne sie vorher anzufärben – das ist Wissenschaftlern des Deutschen Zentrums für Herz-Kreislauf-Forschung (DZHK), der Universität Greifswald und der Universitätsmedizin Greifswald sowie der Technischen Universität Dresden ... mehr

    Zeitraffer-Mikroskopie zeigt wie Gewebe ihre Gestalt annehmen

    Während der Embryonalentwicklung von Mensch und Tier verändern Gewebe ihre Gestalt, um ihre charakteristische, funktionale Form anzunehmen und um Organe auszubilden. Die darin zugrundeliegenden Mechanismen zählen bislang noch zu den großen Geheimnissen des Lebens, deren Ergründung sich Fors ... mehr

    Stagediving mit Biomolekülen verbessert optische Mikroskopie

    Physiker aus Dresden und Würzburg haben eine neuartige Methode für die optische Mikroskopie entwickelt. Mit Hilfe biologischer Motoren und einzelner Quantenpunkte erzeugen sie ultra-hochaufgelöste Bilder. Die Auflösung konventioneller optischer Mikroskopie ist durch das fundamentale physik ... mehr

  • Autoren

    Dr. Torsten Tonn

    Torsten Tonn ist Professor für Transfusionsmedizin an der Medizinischen Fakultät Carl Gustav Carus, Technische Universität Dresden. Er ist ebenfalls Geschäftsführer des DRKBlutspendedienstes Nord-Ost. Vor dieser Stellung leitete er den Bereich für Zell- und Gentherapie des Instituts für Tra ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:



Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.