q&more
Meine Merkliste
my.chemie.de  
Login  

News

Feinchemikalien umweltfreundlich und effizient herstellen

Effiziente Katalyse einer Nobelpreis-Reaktion

ETH Zürich / Edvin Fako

«Der Katalysator ist deshalb so effizient, weil sich das Palladium-Atom innerhalb der Lücke bewegen kann, jedoch von den umliegenden Stickstoff-Atomen festgehalten wird», erklärt ETH-Professor Javier Pérez-Ramírez. Das Palladium-Atom ist in Grün dargestellt.

27.06.2018: Chemieingenieure der ETH Zürich entwickelten einen neuen Katalysator, mit dem kostengünstig und auf umweltfreundliche Weise zwei Kohlenstoffatome miteinander verbunden werden können. Die Technologie könnte schon bald in der Industrie zum Einsatz kommen.

Die chemische Industrie produziert nicht nur wertvolle Vitamine, Medikamente, Aromastoffe und Pflanzenschutzmittel, sondern oft auch sehr viel Abfall. Gerade bei der Produktion von Medikamenten und sogenannten Feinchemikalien übersteigen die Mengen an unverkäuflichen Synthese-Nebenprodukten und Abfällen jene des gewünschten Produkts oft um ein Vielfaches.

Ein Grund dafür ist, dass bei vielen chemischen Reaktionen Katalysatoren in gelöster Form eingesetzt werden, wie Javier Pérez-Ramírez, Professor für Katalyse-Engineering, sagt. Katalysatoren sind Hilfsstoffe, welche eine Reaktion begünstigen. Sind die Katalysatoren löslich, können sie oft nur mit grossem Aufwand vom verwendeten Lösungsmittel und von den entstandenen Produkten und Nebenprodukten getrennt und wiederverwendet werden. Bei Katalysatoren in fester Form fällt dieses Problem weg.

Pérez-Ramírez hat nun zusammen mit seiner Gruppe, weiteren europäischen Wissenschaftlern und einem Industriepartner für eine bedeutende chemische Reaktion einen solchen festen Katalysator entwickelt. Beim Katalysator handelt sich um ein molekulares Gitternetz aus Kohlenstoff- und Stickstoff-Atomen (graphitisches Kohlenstoffnitrid). Dieses Gitternetz weist Lücken auf, welche die Forschenden mit Palladium-Atomen bestückten.

Effiziente Katalyse einer Nobelpreis-Reaktion

Die Wissenschaftler verwendeten winzige Partikel aus diesem Palladium-Kohlenstoff-Stickstoff-Material und konnten zeigen, dass sie damit die sogenannte Suzuki-Kupplung sehr effizient katalysieren können. «Wenn in der Chemie zwei Kohlenstoffatome miteinander verbunden werden sollen, wird das heute oft mit der Suzuki-Kupplung gemacht», sagt Sharon Mitchell, Wissenschaftlerin in Pérez-Ramírez’ Labor. Für diese Reaktion erhielt der Japaner Akira Suzuki zusammen mit zwei weiteren Wissenschaftlern den Chemie-Nobelpreis 2010.

Bisher wurde für diese Reaktion häufig ein löslicher Palladium-Katalysator verwendet. Frühere Versuche, diesen löslichen Katalysator auf einem Festkörper festzumachen, führten bloss zu verhältnismässig wenig stabilen und wenig effizienten Katalysatoren.

Deutlich weniger Abfall

Der neue Palladium-Katalysator der ETH-Forschenden ist sehr viel stabiler. Daher und weil er sich nicht in der Reaktionsflüssigkeit löst, kann er über sehr viel längere Zeit eingesetzt werden. Ausserdem ist der Katalysator viel kostengünstiger und etwa zwanzigmal effizienter als heute verwendete Katalysatoren.

«Das ermöglicht, dass wir mit dem neuen Katalysator nicht nur die Kosten der Synthese von Feinchemikalien reduzieren können, sondern auch den Palladium-Verbrauch und die Abfallmenge», sagt Pérez-Ramírez. Schon bald könnte der Katalysator für den Einsatz in der Industrie bereitstehen: Laut den Wissenschaftlern dürfte es einfach sein, die Produktion des Katalysators und seinen Einsatz vom Labor- zum Industrie-Massstab hochzuskalieren.

Wie die Forschenden betonen, bleibt die Anwendung von graphitischem Kohlenstoffnitrid als Festkörper-Katalysator nicht auf die Suzuki-Kupplung beschränkt. Es dürfte auch möglich sein, das molekulare Gitternetz mit anderen Metallatomen als Palladium zu besetzen, um damit andere Synthesen zu katalysieren. In weiterer Forschungsarbeit werden die ETH-Wissenschaftler diese Möglichkeiten ausloten. Ausserdem planen sie, für die Vermarktung des neuen Katalysators eine Spin-off-Firma zu gründen.

Originalveröffentlichung:
Chen Z, Vorobyeva E, Mitchell S, Fako E, Ortuño MA, López N, Collins SM, Midgley PA, Richard S, Vilé G, Pérez-Ramírez J; "A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling"; Nature Nanotechnology; 25. Juni 2018

Fakten, Hintergründe, Dossiers

  • Palladium-Katalysatoren

Mehr über ETH Zürich

  • News

    Mit Platin-Nanopartikeln selektiv gegen Leberkrebszellen vorgehen

    Obschon in den letzten Jahren immer mehr zielgerichtet wirkende molekularbiologische Krebsmedikamente entwickelt wurden, spielen klassische Chemotherapeutika in der Krebsbehandlung immer noch eine wichtige Rolle. Zu den letzteren gehören Platin-Zytostatika. Das sind Zellgifte, die auf Plati ... mehr

    Die steifsten Leichtbaumaterialien überhaupt

    ETH-Wissenschaftler haben eine Konstruktionsweise entwickelt, welche Leichtbaumaterialien maximale Steifigkeit verleiht. Eine noch steifere Konstruktionsweise zu entwickeln, ist praktisch unmöglich. 3D-Druck und andere additive Fertigungsverfahren ermöglichen es, Materialien mit bisher ung ... mehr

    Massgeschneiderte Emulsionen

    ETH-Materialforscher entwickeln ein Verfahren, mit dem sie Tröpfchen in einer Emulsion gezielt und kontrolliert mit Partikeln ummanteln können, um sie zu stabilisieren. Damit erfüllen sie einen lang gehegten Wunsch von Forschung und Industrie. Mayonnaise ist ein Paradebeispiel für eine Emul ... mehr

  • q&more Artikel

    Analytik in Picoliter-Volumina

    Zeit, Kosten und personellen Aufwand senken – viele grundlegende sowie angewandte analytische und diagnostische Herausforderungen können mit Lab-on-a-Chip-Systemen realisiert werden. Sie erlauben die Verringerung von Probenmengen, die Automatisierung und Parallelisierung von Arbeitsschritte ... mehr

    Investition für die Zukunft

    Dies ist das ganz besondere Anliegen und gleichzeitig der Anspruch von Frau Dr. Irmgard Werner, die als Dozentin an der ETH Zürich jährlich rund 65 Pharmaziestudenten im 5. Semester im Praktikum „pharmazeutische Analytik“ betreut. Mit Freude und Begeisterung für ihr Fach stellt sie sich imm ... mehr

  • Autoren

    Prof. Dr. Petra S. Dittrich

    Jg. 1974, ist Außerordentliche Professorin am Department Biosysteme der ETH Zürich. Sie studierte Chemie an der Universität Bielefeld und Universidad de Salamanca (Spanien). Nach der Promotion am Max-Planck-Institut für biophysikalische Chemie in Göttingen war sie Postdoktorandin am ISAS In ... mehr

    Dr. Felix Kurth

    Jg. 1982, studierte Bioingenieurwesen an der Technischen Universität Dortmund und an der Königlich Technischen Hochschule in Stockholm. Für seine Promotion, die er 2015 von der Eidgenössisch Technischen Hochschule in Zürich erlangte, entwickelte er Lab-on-a-Chip Systeme und Methoden zur Qua ... mehr

    Lucas Armbrecht

    Jg. 1989, studierte Mikrosystemtechnik an der Albert-Ludwigs Universität in Freiburg im Breisgau. Während seines Masterstudiums konzentrierte er sich auf die Bereiche Sensorik und Lab-on-a-Chip. Seit dem Juni 2015 forscht er in der Arbeitsgruppe für Bioanalytik im Bereich Einzelzellanalytik ... mehr

q&more – die Networking-Plattform für exzellente Qualität in Labor und Prozess

q&more verfolgt den Anspruch, aktuelle Forschung und innovative Lösungen sichtbar zu machen und den Wissensaustausch zu unterstützen. Im Fokus des breiten Themenspektrums stehen höchste Qualitätsansprüche in einem hochinnovativen Branchenumfeld. Als moderne Wissensplattform bietet q&more den Akteuren im Markt einzigartige Networking-Möglichkeiten. International renommierte Autoren repräsentieren den aktuellen Wissenstand. Die Originalbeiträge werden attraktiv in einem anspruchsvollen Umfeld präsentiert und deutsch und englisch publiziert. Die Inhalte zeigen neue Konzepte und unkonventionelle Lösungsansätze auf.

> mehr zu q&more

q&more wird unterstützt von:



Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.